-Define the Time Section Mode .. 118
Sounding/Hodograph/BUFKIT/Trajectory Point Setup........................... 123
-Sounding Display .. 126
-Hodograph Display .. 130
-BUFKIT File Generation .. 132
-Trajectory Display .. 134
-Surface Frontal Positions .. 137
Products Menu .. 138
-Product Category .. 138
-Command Window .. 140
Command Line Operations .. 141
1 Panel/4 Panel Operations ... 141
Defining Products .. 143
Command Line Execution .. 143
Products Menu Execution .. 143
Macro Files .. 147
Plot Labels .. 151
Custom Labels .. 153

WINGRIDDSS Command Line Operations ... 159
Changing Flag Variable Values – Level/Layer Specification 160
Changing Flag Variable Values – Time Specification 160
Specifying the Display Area ... 160
Choosing Custom Map Backgrounds .. 161
Choosing 1 Panel or 4 Panel Display Mode ... 161
Choosing Custom Map Navigation Mode .. 162
Command Structures – Displaying Primary Data Fields 162
Overlaying Displays on a Single Command Line 164
Changing Contour Intervals ... 164
Simplified Contour Interval Selection .. 165
Changing Contour Colors / Dashed Contours 165
Single Line Contour Plot ... 165
Plotting Digital Grid values at Data Points / Scaling Options 166
Wind Displays .. 166
Changing Arrow Length ... 167
Displaying Wind Barbs or Streamlines ... 167
Use of Layers or Multiple Time Periods .. 167
Native RUC (Rapid Update Cycle) Hybrid-B levels 168
Animation ... 169
Animation in 4 Panel Mode ... 170
Animation Controls .. 171
Specify a Cross Section Path .. 171
Cross Section Wind Displays .. 172
Specify a Time Section Plot ... 172
Sounding Commands ... 174
Hodograph Commands ... 174
Trajectory Commands ... 175
BUFKIT Data Generation Commands .. 175
Commands for Layer/Time Values .. 237
Commands for Lifting Layers ... 240
Commands to Alter Appearance of Display Fields & Data..................... 241

WINGRIDDS Automatic Mode Operations ... 243

Online Help ... 244
Macro Help .. 245
WINGRIDDS Documentation .. 245
GRIB1 & GRIB2 Documentation .. 245

Customizing the WINGRIDDS System .. 246
WINGRIDDS Configuration ... 246
-Properties – WINGRIDDS Contour Colors .. 247
-Properties – Surface/Upper Air Station Colors 248
-Properties – WINGRIDDS Data Directories 249
-Properties – WINGRIDDS Directories Dialog 250
-Properties – Soundings Colors ... 251
-Properties – Hodographs Colors .. 252
-Properties – Streamline Settings ... 253
-Properties – WINGRIDDS General Settings 254
-Properties – WINGRIDDS Map Settings .. 255
-Properties – WINGRIDDS General Settings 2 256
-Properties – WINGRIDDS Custom Color Selection 257
Model Origination and Flight Levels for Labels 258
Initial Pressure Levels and Forecast Hours .. 258
Changing Width of a Cross-Section Plot .. 259
Changing Pressure Levels for Cross-Section and Time-Section Plots .. 259
Changing Forecast Hours for Time-Section Plots 260
Station ID Lists .. 261
User Defined Alias Commands ... 262
GRIB Specification for Data Ingest ... 263
-GRIBMODL.DAT ... 263
-GRID.DAT ... 263
-GRIBPARM.DAT/MOSGRIBPARM.DAT ... 264
-GRIB2PARM.DAT ... 265
-GRIB2ENSPROBPARM.DAT .. 267
-GRIBLEVEL.DAT .. 268
-GRIB2SKIP.DAT ... 268
Map Type Specifications .. 269
Background Map Selection ... 269
Plan, Cross Section & Time Section Area Lookup Tables 271
Setting and reading Default Contour Color-Fill Colors 272

Customizing Data Downloading ... 273
-GRIB/Observation Data Download Category File 274
-Download List File ... 275
-Download Data File .. 276
Thank you for your interest in WINGRIDDS. Although WINGRIDDS software is freeware, your use of the WINGRIDDS software is subject to the terms and conditions of this License.

In downloading and/or using the WINGRIDDS software you agree to the terms and conditions of this License. If you do not accept the terms and conditions of this License you should not use the WINGRIDDS software and should remove any copies of the WINGRIDDS software from your system.

Intellectual Property Rights
============================
All intellectual property rights in the WINGRIDDS software are owned and retained by Jeff Krob, registered in the United States of America.

License
=======
WINGRIDDS hereby grants you a non-exclusive, perpetual, worldwide, personal license to use the WINGRIDDS software.

You may make copies of the WINGRIDDS software for distribution to others on a not-for-profit basis, provided that all such copies are identical to the WINGRIDDS software you downloaded. WINGRIDDS recommends that you pass the details of the WINGRIDDS website to anyone you provide your WINGRIDDS software to, so that they have the option of downloading the most recent version of the WINGRIDDS software. The WINGRIDDS home page is: winweather.org.

You may not translate, reverse engineer, decompile, disassemble, modify or create derivative works based on the WINGRIDDS software except as expressly permitted by the law applicable to these terms and conditions.

All other rights are reserved to WINGRIDDS.

Liability
=========
WINGRIDDS developer has used all reasonable skill and care to ensure that the WINGRIDDS software will run properly on a suitably configured system and is virus free. However, WINGRIDDS cannot guarantee that the WINGRIDDS software will be free from bugs, errors, or other damaging code, or that it will be suitable for your purposes.

You therefore agree that you run the WINGRIDDS software on your system at your own risk and that WINGRIDDS is under no obligation to update the WINGRIDDS software or to correct errors in it. Other than the statements made in this License WINGRIDDS excludes all warranties, representations and conditions, whether express or implied by statute or otherwise to the extent permitted by law.

WINGRIDDS is absolved, removed and has no liability in contract, tort (including negligence or breach of statutory duty), misrepresentation, restitution or otherwise, arising in connection with your use of the WINGRIDDS software.

You agree that WINGRIDDS is not liable for pure economic loss, loss of profit, loss of business, depletion of goodwill, loss of data, waste of management or office time or otherwise, in each case whether direct, indirect or consequential, or any claims for consequential compensation whatsoever (howsoever caused).
which arise out of or in connection with your use of, or inability to use, the WINGRIDDSS software.

Nothing in these terms and conditions excludes or limits the liability of WINGRIDDSS for death or personal injury caused by WINGRIDDSS’ negligence or for fraudulent misrepresentation or for anything else for which it would be unlawful to exclude liability.

These terms and conditions constitute the entire agreement between you and WINGRIDDSS in connection with your use of the WINGRIDDSS software.

Law

If any provision of these terms and conditions is prohibited by law or judged to be illegal, void, invalid or unenforceable (in whole or in part) by any court or administrative body of competent jurisdiction for any reason, that provision shall to that extent be deemed not to form part of these terms and conditions but the enforceability of the remainder of these terms and conditions shall not be affected and shall remain in full force and effect.

These terms and conditions shall be governed by and construed in accordance with the law of the United States. You and WINGRIDDSS agree that the courts of United States shall have exclusive jurisdiction over any claim or matter arising under or in connection with these terms and conditions.
Welcome to WINGRIDDSS, the Microsoft Windows 32-bit version of the original Personal Computer based Gridded Interactive Display and Diagnostic System (PCGRIDDS). It is intended as a forecaster's tool for providing interactive access to high resolution meteorological information in support of domestic forecasting and international aviation using the Microsoft WINDOWS computer environment.

WINGRIDDSS is a software tool that allows forecasters to perform a wide variety of diagnostic operations on gridded model data and observation data. The software runs on any x86-based personal computer (PC) running Microsoft Windows XP or newer. The gridded data are obtained from numerical weather prediction (NWP) models routinely run at the National Center for Environmental Prediction (NCEP) in Camp Springs, Maryland, other international meteorological forecast centers as well as local-run mesoscale models. The observation data is freely available from various university, college and government web and FTP sites.

WINGRIDDSS offers an amazing variety of commands to view and manipulate gridded data and observation data. Included with WINGRIDDSS are a host of diagnostic functions to perform such operations as compute advection, divergence, take differences between fields, multiple a scalar field by a constant, etc. - the list is extensive. The WINGRIDDSS user interface allows one to enter various combinations of command. Lengthy combinations of commands, or commands frequently used can be stored on disk for future use as a "command file". Command files have been written to compute such quantities as moisture convergence, 850 mb theta-E advection, Q-vectors, scalar frontogenesis, etc.

To realize and effectively use the full spectrum of WINGRIDDSS commands - to go beyond simply displaying basic fields of temperature, wind, and moisture - requires a sound background in mathematics, especially elementary vector operations. Much of the background on vector operations can be found in any undergraduate calculus or dynamical meteorology textbooks. Good references would include the recent books by Holton (1992) or Bluestein (1992). Basically, if you understand the mathematical concepts of 1) partial differentiation, 2) gradient of a quantity, and 3) the scalar "dot" product and advection of a quantity, you'll be a long way to learning how to use WINGRIDDSS effectively. Regardless, even without the mathematics, WINGRIDDSS is still quite a useful diagnostic tool.

WINGRIDDSS is also quite useful for displaying meteorological quantities in an isentropic coordinate framework. The area of isentropic analysis is enjoying quite a resurgence with the meteorological community. This resurgence is no doubt helped by availability of software, like WINGRIDDSS, to view quantities isentropically. Moore (1993) contains a thorough review of isentropic analysis in the forecast process. Forecasters who use WINGRIDDSS should try examining moisture and wind data in isentropic space.

What is this document?

This document is a reference manual that describes all commands available within WINGRIDDSS. It will not teach you mathematics or dynamic meteorology. It will not teach you how to use WINGRIDDSS to put a forecast together. What it does provide is documentation for each of the variety of WINGRIDDSS commands that you may (someday) want to use. There are over 300 unique WINGRIDDSS commands! Like any reference manual, you consult it when you have some question on what a particular command does and what input quantities the command requires, or what the output from the command is.

It's a good idea to skim through this manual, taking note of commands that interest you. Also, scan through the table of contents. Don't be afraid to try out new commands or experiment with computing various quantities - you won't break the system. Often, learning a new command sparks some interest in using it to answer some question you may have about the model data field.
WINGRIDDS is useful for local research studies. Once the model grids for a particular event are obtained, one can easily and readily review the model forecasts and perform sophisticated diagnoses of various fields.

Good luck and enjoy.

Jeff Krob

NESDIS
National Oceanic and Atmospheric Administration
Department of Commerce
United States of America

WINGRIDDS Home Page: http://winweather.org
WINGRIDDS Email Support: Jeffrey.A.Krob@noaa.gov
jkrob@comcast.net
Introduction

WINGRIDDS, a 32-bit Microsoft WINdows based GRidded Interactive Display and Diagnostic System, is a software package that allows the user to view meteorologically significant fields of gridded analysis and numerical weather prediction model output as well as observation data. The fields are displayed in either contour or vector format, whichever is appropriate for a particular field. Observation data can also be displayed in Surface or Upper-air Station plots. This package also allows the user to extract a variety of information from meteorological diagnostic parameters computed from the data fields.

The flexibility of WINGRIDDS allows the package to meet the needs of users with a wide range of skills and requirements. The novice can quickly learn to display a wide variety of predefined products using the WINGRIDDS Menu system. More advanced users can develop specialized products to meet their individual needs using the programmable WINGRIDDS Command language, including the creation of customized menu options to meet specific user needs.

This documentation guides users through installation and the basic concepts of operating WINGRIDDS through its menu system. It then proceeds with a discussion of topics useful for the more advanced user or system administrator. ONLINE HELP is available while using WINGRIDDS. All users should read the first four sections carefully:

A. Introduction
B. Installation of WINGRIDDS
C. Using WINGRIDDS

The remaining sections can be selected according to the user's needs and interests.

Before Installation

System Requirements and Preparation

-- Hardware Recommendations

- **AMD Athlon/Intel PENTIUM processor or greater running MS Windows XP or greater.**
- **VGA graphics adapter** Microsoft Windows compatible VGA or better color monitor.
- **16MB or greater memory** This amount of memory is the minimum required to run WINGRIDDS on Windows XP. As with any Microsoft Windows installation, the more memory, the better.
- **Printer** WINGRIDDS uses the default Windows printer.

-- System Setup

WINGRIDDS runs Microsoft Windows XP or later. WINGRIDDS development no longer supports earlier version. The system configuration necessary to run WINGRIDDS is described in this section.
Networks

- Installation
 The WINGRIDDS software is designed for installation on a standalone PC. Data download is usually done via a network and Internet connection.

- Data
 The data displayed within WINGRIDDS may be located on a network drive. The complete path (drive and directory) to the data must be specified in the file, USER\WINGMODE.DAT. Refer to ‘WINGRIDDS Configuration’ section additional information.

-- Memory Requirements
 WINGRIDDS requires a minimum of 7MB of memory. The ingest programs that convert data from GRIB to WINGRIDDS format require about 3MB each of memory. Check the available memory for running programs.

Installation of WINGRIDDS

- New Installation of WINGRIDDS
 Before you start the installation, read and check the following information.

 1. The WINGRIDDS software must be installed on a hard drive which is located on a standalone PC.

 2. If necessary, the installation will create the following directories: \WINGRIDDS. If the directories already exist, it will write over any files in these directories. Before installation, save any important files in these directories and remove the directories.

- Internet Access to WINGRIDDS Software and Documentation

WINGRIDDS Home Page: http://winweather.org
-- Install WINGRIDDs from your hard drive

Once the transfer of the WINGRIDDs files to your local system is complete, you can install WINGRIDDs from your hard drive.

1. Copy the WINGRIDDs installation file (WINGRIDDs.MSI) to a temporary directory of the hard drive you wish WINGRIDDs to execute from. If the file is not seen on your system as an executable file, you will have to download and install the latest Microsoft Installation client which is available from Microsoft or downloadable from the WINGRIDDs Home Page.

2. Execute the WINGRIDDs.MSI file and you will see the following:

3. Click on the 'Next' Button and follow the instructions.
4. The Installation Utility will default to the C:\WINGRIDDS directory and that is the preferred location. However, if you wish to have WINGRIDDS run from another directory or drive, you may select it here.
NOTE: If the directory used for data displayed by WINGRIDDS is not stored in the directory \WINGRIDDS\GRIDDATA directory, you MUST modify entry 2 in the file USER\WINGMODE.DAT. Refer to the section ‘WINGRIDDS Configuration’ or the internal documentation in the file for additional information.

5. Click the ‘Install’ Button to begin the file copy process.
6. During the installation process, all files and directories will be created and copied. Also Program File and Desktop shortcuts to WINGRIDDS will be created.

7. At the successful end of the installation, click the 'Finnish' button. No system restart is required.
Removal of WINGRIDDS

In order to uninstall WINGRIDDS, go to “Settings>Control Panel>Add/Remove Programs” section of Windows. Once the program listing is complete, scroll down to the bottom of the page to where WINGRIDDS is listed (the program listing should be alphabetical). Once the WINGRIDDS list is found, click on the “Add/Remove” button to uninstall WINGRIDDS. Since there are no scattered DLL files, the uninstall process is clean and all files, directories and icons will be removed.

-- Directory Structure

Below is a diagram of the directory structure required to run WINGRIDDS. All directories must be present in order to run WINGRIDDS.

WINGRIDDS
 ─── ANIMATE
 │ CLIMO
 │ DATA
 │ DOC
 │ ├── GRIB1
 │ │ └── GRIB2
 │ └── GRIB
 │ ├── NWS *
 │ │ └── MOS *
 │ └── USER
 │ └── NAFS *
 │ └── OCTANTI
 │ └── OCTANTJ
 │ └── OCTANTK
 │ └── OCTANTL
 │ └── OCTANTM
 │ └── OCTANTN
 │ └── OCTANTO
 │ └── OCTANTP
 └── GRIDDATA
 ├── MODEL
 └── OBS
 └── HELP
 └── MACROS
 └── MAPFIL
 └── Country_Provinces
 └── OBS
 └── SURFACE
 └── BUOY
 └── FRONT
 └── METAR
 └── SHIP
 └── SYN
 └── UPPER-AIR
 └── PRTFIL
 └── USER

WINGRIDDS The main WINGRIDDS directory contains the temporary and status files written by WINGRIDDS and the program files used to run the WINGRIDDS system. Your system administrator may modify the .PCG file to meet the needs of your environment. If an error occurs during the execution of WINGRIDDS, files, such as WINGRIDDS.LOG, GRIB2PCG32.OUT, NGRB2PCG32.OUT and OBS2PCG.OUT may provide information about the source of the problem.
ANIMATION
The **ANIMATION** directory contains all of the files which are created and used every time an animation command is executed within WINGRIDDS.

CLIMO
The **CLIMO** directory contains supporting data files used by WINGRIDDS to calculate climate averages & anomalies. There is a data file for each month of the year with various SCALAR & VECTOR meteorological averaged parameters calculated over 2 time periods: 30yr (1985-2015) and 60yr (1955-2015).

DATA
The **DATA** directory contains supporting data files used by WINGRIDDS to display items such as forms and messages. This directory does not contain gridded data files.

The contents of these files are crucial to the operation of WINGRIDDS and should be modified only by the system administrator.

DOC
The **DOC** directory contains the WINGRIDDS User Guide as well as the html GRIB1 and GRIB2 documentation.

GRIB
The **GRIB** directory contains files that control the selection and processing of GRIB data that is converted to WINGRIDDS format. Within it are located the sub-directories **NWS**, **WAFS**, **MOS** and **USER**. Under the **WAFS** directory are subdirectories for each WAFS Octant, I-P.

Files in this directory are crucial to the operation of the ingest process and should not be modified by any user.

NWS
Non-WAFS GRIB data files that will be converted to WINGRIDDS format are stored in the **WINGRIDDS\GRIB\NWS** directory. This directory may be located in another location including shared drives if necessary. If relocated, it must be reflected in the WINGMODE.DAT file.

Files in this directory are provided by the GETGRIB utility (refer to ‘Downloading GRIB data’ and ‘Customizing the GRIB Download Process’) or by the user using other transfer methods separate from WINGRIDDS.

MOS
Non-WAFS MOS GRIB data files that will be converted to WINGRIDDS format are stored in the **WINGRIDDS\GRIB\MOS** directory. This directory may be located in another location including shared drives if necessary. If relocated, it must be reflected in the WINGMODE.DAT file.

Files in this directory are provided by the GETGRIB utility (refer to ‘Downloading GRIB data’ and ‘Customizing the GRIB Download Process’) or by the user using other transfer methods separate from WINGRIDDS.

USER
Contains all of the GRIB and Observation data Internet download scripts that control the data download process and the data files to create the Data Download Menus.

Files in this directory are used by the GETGRIB utility (refer to ‘Downloading GRIB data’ and ‘Customizing the GRIB Download Process’).
These files can be modified by the system administrator to meet your requirements (refer to ‘Customizing the Data Download Process’).

WAFS

WAFS GRIB data files that will be converted to WINGRIDDS format are stored in the `WINGRIDDS\GRIB\WAFS\OCTANT*` directory where the ‘*’ stands for the Octant letter it represents. The user should place all ‘J’ Octant GRIB files in the `WINGRIDDS\GRIB\WAFS\OCTANTJ` directory and so on. This directory may be located in another location including shared drives if necessary. If relocated, it must be reflected in the WINGMODE.DAT file.

Files in this directory are provided by the GETGRIB utility (refer to ‘Downloading GRIB data’ and ‘Customizing the GRIB Download Process’) or by the user using other transfer methods separate from WINGRIDDS.

GRIDDATA

The GRIDDATA directory is the default directory where the processed gridded meteorological data are stored. This is also where GEMPAK data files would be stored. This directory may be located in another location including shared drives if necessary. If relocated, it must be reflected in the WINGMODE.DAT file.

Gridded data files can be added or deleted.

MODEL

The directory where the new version gridded meteorological data are stored. The regular GRIB ingest utility NGRB2PCG32 has been modified to create a new data file format to allow for the processing of much larger GRIB datasets. The older single-file data format has been changed to a multiple-file data format organized by a controlling inventory file.

OBS

Contains all of the processed Surface and Upper-Air Observation data processed for a specific time. This text-based data is used to create the Station Plots and build the gridded data files. These text files are what should be edited to remove erroneous observations which are corrupting the gridded data.

HELP

The HELP directory contains files used to supply ONLINE HELP for WINGRIDDS Command Macros.

WINGRIDDS is delivered with a default set of HELP files. If any customized macros are added to a 'Product List' menu, it is strongly recommended that a corresponding HELP file should also be added to the HELP directory.

MACROS

The MACROS directory contains the currently active command files (xxxx.CMD) used to display WINGRIDDS products, the text file for the 'Product Category' menu (`CMDMENU.LST`), and the text files for the 'Product List' menus (`CMDMENU.###`).

WINGRIDDS is delivered with a default set of macros. You are encouraged to develop customized command files and menus to meet the special requirements of your environment (refer to 'Defining Products').
MAPFIL
The MAPFIL directory stores all of the original resolution and high resolution map files which are plotted on the WINGRIDDS background. In order to display a map on the screen, WINGRIDDS must transform latitude/longitude based line segment coordinates (found, for example, in the file WINGRIDDS\MAPFIL\WORLD.MAP) to the current map projection on the screen. This is a time consuming process. To increase the efficiency of WINGRIDDS, display maps can be saved. The MAPFIL directory contains the saved display maps (QCONTMP.###, QCONLTLN.###) and the list (MAP.LST) of and index (MAP.IDX) to the names of the saved display maps.

Your system administrator can save frequently accessed display maps by using the SVMP command. Files in this directory are controlled by WINGRIDDS and should not be modified by any user.

Country_Provinces
The Country_Provinces contains individual high resolution data map files of country province outlines which can be used in conjunction with the other high resolution map files. The MAPFILE.DAT file controls the use of all high resolution map files.

OBS
The OBS directory contains the subdirectories which hold the raw observation files to be processed and converted by the OBS2PCG Observation Ingest utility.

SURFACE
This directory contains the categorized subdirectories which contain the surface observations.

BUOY
The BUOY directory contains the individual raw buoy observation messages.

FRONT
The FRONT directory contains the individual ASUS Frontal Position observation messages.

METAR
The METAR directory contains the individual raw SAO/METAR observation messages.

SHIP
The SHIP directory contains the individual raw ship observation messages.

SYN
The SYN directory contains the individual raw synoptic observation messages.

UPPERAIR
The UPPERAIR directory contains the individual raw RAOB upper-air observation messages.

PRTFIL
The PRTFIL directory contains files used for printing. Files with the extension .SVG contain products saved by the user for printing and restoring to the screen.

The files, !A.SVG and A.SVG, are dummy files used by WINGRIDDS and should not be deleted. Files that begin with ‘!’ are used for delayed printing and should be managed through WINGRIDDS. All other .SVG files may be deleted by the user when they are no longer needed.
The **USER** directory contains files that control defaults for and the appearance of product displays, menu displays, and printed output. Other files provide WINGRIDDSS with information about your computing environment.

These files can be modified to meet your requirements (refer to 'Customizing WINGRIDDSS').
WINGRIDDS Applications

Downloading GRIB Data

WINGRIDDS works off of GRIB model data or Observation data and that data must be transferred into the WINGRIDDS system to be converted into PCG data format. This section will only cover GRIB data. WINGRIDDS uses the GETGRIB utility build the FTPDATA.BAT batch file using user configured data files within the WINGRIDDS/GRIB/USER directory and executes the cURL utility to perform the actual transfer of downloading GRIB files via the Internet or local intranet. The GRIB transfer process can be performed from within WINGRIDDS while WINGRIDDS is executing or it can be done in an automated function during off hours through scheduled batch file execution using user created batch files and the Microsoft Windows Scheduling task. This process is covered in more detail below.
-- GRIB Download within WINGRIDDS

The first selection under the ‘File’ Menu, ‘Download GRIB Files’, leads to a sub-menu which has ‘WAFS GRIB’, ‘Regular GRIB’, ‘MOS GRIB’ and ‘Ensemble GRIB’. The Ensemble GRIB selection has its own sub-menu which lists ‘Regular GRIB’ and ‘WAFS GRIB’ selections. See the figure below.

These selections are listed because each has its own separate directory destination under the GRIB directory. Any types of GRIB which do not fall under the category of WAFS, MOS or Ensemble should be listed under the ‘Regular GRIB’ listing.
Upon choosing a GRIB category, for example, ‘Regular GRIB’, brings up the GRIB Download Category:

This will display the contents of a file which is configurable by the user (refer to ‘Customizing the GRIB Download Process’). The user can double-click on a selection or single-click a selection to highlight and Click the ‘OK’ button.
Upon the selection by the user, the ‘GRIB Download Selection’ window is displayed. See the figure below.

The GRIB Download Selection windows lists the individual data file names and descriptions for doing a GRIB download job. These files are also configurable by the user (refer to ‘Customizing the GRIB Download Process’). The user can double-click on a selection or single-click a selection to highlight and Click the ‘OK’ button.

Upon this action, the GRIB download utility will begin and open a separate window to show the progress of the file download. If the user is running WINGRIDDSS, that window can be iconized or placed in the background so WINGRIDDSS operations can resume.
-- Automated GRIB Download Outside WINGRIDDS

The user can create batch files to execute the GETGRIB utility using the Microsoft Windows Scheduler to
time when and where the batch file will run. The commands for the batch file are as follows:

GETGRIB “user file”.DAT

Where the “user file” is a ‘.DAT’ file which holds the commands for downloading the specific GRIB files the
user wants. This file name is the same as what is listed in the left column in the GRIB Download Selection
window (refer to ‘Customizing the GRIB Download Process’).

Detailed configuration & use of automation scripts and scheduling tasks for stand-alone Workstations or
Workstation/Server system configurations are given in the Workstation/Server Setup section.

Ingesting GRIB Data

As the name implies, WINGRIDDS works off of GRIB format gridded model data. However, WINGRIDDS
cannot work with the GRIB data directly. It must convert the GRIB data to WINGRIDDS rapid-access
format before any data can be displayed. This process is referred to as ingesting GRIB data and this is
where the GRIB ingest utilities are used. The use of these utilities will be covered in separate sections
below. The utility NGRB2PCG32 is used to ingest regular (non-WAFS) & ensemble GRIB data, the
NMOSGRB2PCG32 utility is used to ingest MOS GRIB data only and the GRIB2PCG32 utility is used to
ingest WAFS & ensemble WAFS GRIB data.

Both NGRB2PCG32 and NMOSGRB2PCG32 have the same command line options but the utilities can
be executed without any options and they will use default settings. The command line options are as
follows:

NGRB2PCG32 [S/source directory] [D/destination directory] [F/file name] [L/] [O/]

Where;
S/source directory = forces ingest from the requested data directory
D/destination directory = forces processed data placed in requested directory
F/file name = forces the processed data to be saved as a user define file name
L/ = will save the output log file in a unique file name
O/ = will save processed data files in the old format

As stated, when executed without arguments, NGRB2PCG32 & NMOSGRB2PCG32 will execute using the
directory properties read from the USER\Wingcfg.dat file but in the following example, the GRIB data will
be read from the D:\GRIB and placed in the C:\OUT directory, the output file called PCGMODEL.DAT and
create a unique log file for records. The command will be:

NGRB2PCG32 S/D:\GRIB D/C:\OUT F/PCGMODEL.DAT L/

The logfile name will be created from the processed data file name: PCGMODEL.DAT.LOG

The WINGRIDDSS-format files created with these new GRIB ingest utilities are not compatible with the DOS
versions. With WINGRIDDS v3, and new data file format, PCG Version 2, has been created to allow for
larger data sets as well as including the Grid Navigation information so the files MAPTYPE.DAT and
GRIDTYPE.DAT are no longer needed in association with these new files. However, if you still wish to
display the older, PCG Version 1 (DOS) versions of PCG files, due to the lack of grid navigation information
embedded within the file, the MAPTYPE.DAT file from the DOS PCGRIDDDS program which created those files will have to be copied to \WINGRIDDS\DATA directory so WINGRIDDS may obtain the grid navigation information and display the Version 1 files correctly.

The PCG Version 2 files have a different naming convention from PCG Version 1 files. The Version 1 files had a name format such as for WAFS: WAF27APR.00Z where:

- WAF - WAFS grid
- 27 - Day of the month
- APR - Month
- 00Z - Hour of Model run

or for NWS-type files: JN089500.E48 where:

- JN - Month
- 08 - Day of the month
- 95 - Year
- 00 - Hour of Model run
- E48 - Three alphanumeric representation for grid projection from MAPTYPE.DAT file.

The PCG Version 3 files have a different, and much more descriptive naming convention. WAFS, NWS and NWS MOS files still have their differences. A WAFS file would have a name such as: MAR150312.AVN-JKLI where:

- MAR - Month
- 15 - Day of month
- 03 - Year (last two digits)
- 12 - Hour of Model run
- AVN - 3-letter Model name
- JKLI - Octants included in GRIB ingest

Or for NWS-type files: NOV070312.NAM211 where:

- NOV - Month
- 07 - Day of the Month
- 03 - Year (last two digits)
- 12 - Hour of Model run
- NAM - 3-letter Model name
- 211 - Grid Projection Number

Or for NWS MOS-type files: NOV070312.NAMMOS211 where:

- NOV - Month
- 07 - Day of the Month
- 03 - Year (last two digits)
- 12 - Hour of Model run
- NAM - 3-letter Model name
- MOS - Signifying MOS-type data
- 211 - Grid Projection Number

WINGRIDDS can also process Ensemble GRIB data. This results in a different data file name format to convey the information concerning the Ensemble model data. The NWS-type files will have a name format of the following:
The Date-Time-Group will be the same format as all PCG data files.

Following the center decimal; AAABCCDDEEFFF

Where –

AAA = 3-letter Model name
B = ‘E’ for Ensemble-type data file
CCC = ‘NEG’ for Negative Perturbed Forecast
‘POS’ for Positive Perturbed Forecast
‘MBR’ for Ensemble Member ID
DD = ‘00-20’ Ensemble member ID
EE = ‘FU’ Full Field
‘SD’ Standard Deviation
‘WM’ Weighted Mean

--- OR ---

If data is Ensemble Weighted Mean, CCCDDEE = ‘AVERAGE’
If data is Ensemble Standard Deviation, CCCDDEE = ‘STDEVAT’
If data is Ensemble Probability data, CCCDDEE ‘PROBLTY’

FFF = Grid Projection Number

The WAFS-type files will have a name format of the following:

The Date-Time-Group will be the same format as all PCG data files.

Following the center decimal; AAA‘-BCCDDEEFFF

Where –

AAA = 3-letter Model name
B = ‘E’ for Ensemble-type data file
CCC = ‘NEG’ for Negative Perturbed Forecast
‘POS’ for Positive Perturbed Forecast
‘MBR’ for Ensemble Member ID
DD = ‘00-20’ Ensemble member ID
EE = ‘FU’ Full Field
‘SD’ Standard Deviation
‘WM’ Weighted Mean

--- OR ---

If data is Ensemble Weighted Mean, CCCDDEE = ‘AVERAGE’
If data is Ensemble Standard Deviation, CCCDDEE = ‘STDEVAT’
If data is Ensemble Probability data, CCCDDEE ‘PROBLTY’

FF = Total number of Octants

With WINGRDDS v4, the regular GRIB ingest utility NGRB2PCG32 has been modified further to allow much larger GRIB data sets to be ingested and used within WINGRDDS. The heritage file format from the original PCGRIDDS had all GRIB inventory and model data packed into a single data file with some element of data compression used. As model outputs grew, this format began to bump into the 4 Gb file
size limit for 32-bit operating systems. For example, a complete GFS model run out to only 192 hours
creates over 100GB of data and obviously, this would not fit into a single data file within the 4GB limit. Also,
there was a data corruption issue if the ingested GRIB data pack had any "missing" data points around the
sides of the data area. These missing data points would corrupt the data compression algorithm and the
resulting data could not be viewed correctly within WINGRIDDS – scalar data would show a ‘stair-stepping’
effect & was not usable.

Both of these issues have been corrected with the creation of a new processed data file format/
organization system. This has required a new directory to be created within the WINGRIDDS\GRIDDATA
directory called WINGRIDDS\GRIDDATA\MODEL. The new GRIB processing is described below.

As a set of GRIB files for a model run are processed, the regular data file within the
WINGRIDDS\GRIDDATA directory is created & this is what is visible to the WINGRIDDS user to open a
processed file for use within WINGRIDDS. However, the date-time-group of the model run is determined
and a new subdirectory within the MODEL directory is created to store the processed data. This directory
has the name as the date-time-group of the model run as follows: YYYY-MM-DD-HH. The ‘HH’ in the name
is the hour of the day the model was run & will be from 00-24. Any model GRIB data from the ‘00’ hour, for
example, which is processed, will be stored in the ‘00’ hour directory of that date. Within each date-time-
group directory, for each model run processed, there is a corresponding ‘detailed' inventory file created and
a data file is created for each forecast hour processed. The detailed inventory file contains an inventory
entry of each parameter & corresponding level/forecast hour. For each of these entries, there is also listed
the forecast-hour file name which contains that specific parameter as well as an address entry pointing to
the location within that specific forecast-hour file where to find the data array for that parameter. All of the
file names created in the process are associated with the file named within the GRIDDATA directory.
Therefore, even if the user creates a customized processed file name, that naming will be passed along to
the detailed inventory file as well as the forecast-hour file names. Here is an example of a typical GRIB
ingest process for a Navy FNMC model run.

NGRB2PCG32 processes a 00Z FNMC model run from October 23rd 2010 which had a NWS grid ID of
240. The regular WINGRIDDS file name created in the GRIDDATA directory is called OCT231000.FNP240
but, as stated, this only contains grid navigation info as well as parameter/level inventory info for the full
model data processed. There is *NO* model scalar/vector data within this file so it will be much smaller
than before. With the date-time-group of the model run determined, a new directory is created within the
GRIDDATA\MODEL directory called “2010-10-23-00”. As different forecast hours are processed, forecast-
hour files are created and the uncompressed, unpacked GRIB data are stored and the addresses of each
parameter/level are recorded for the creation of the detailed inventory file at the end. Each forecast-hour
file name is a subset of the original file created in the GRIDDATA. The alphanumeric entries to the *right*
of the period in the original file name are used to create the forecast-hour file name as well as the detailed
inventory file name. Since the GRIDDATA file name is OCT231000.FNP240, the “FNP240” portion is used
to create the forecast-hour filename a 4-digit place for the actual forecast hour & ending in “.GDAT”.
So the processed data will look like this:

FNP2400000.GDAT
FNP24000006.GDAT
FNP24000009.GDAT
FNP24000012.GDAT
FNP24000015.GDAT
FNP24000018.GDAT
FNP24000021.GDAT
FNP24000030.GDAT
FNP24000036.GDAT
FNP24000042.GDAT
FNP24000048.GDAT
At the end of the GRIB processing, all of the inventory and data addressing information is collected and the detailed inventory file is created, again, with the “FNP240” name but followed with “.INV”. So, the detailed inventory file name would be FNP240.INV. All of this is transparent to WINGRIDDS operations.

*****NOTICE***** When you need to back-up any new processed model data, you need to remember to collect not only the file created within the GRIBDATA directory, but also all associated directories, inventory and data files and they *MUST* be installed in the destination computer in the same date-time-group directory within “MODEL” as it was taken from the original PC.

*****NOTICE***** If the user chooses to override the default file naming and use custom file names in the GRIB processing, the name *MUST* have a delimitating decimal point!! The alphanumerics to the *LEFT* of the decimal point are not important *HOWEVER*, the alphanumerics are *VERY* important to the *RIGHT* of the decimal point & must be chosen wisely. It is advised to include at least the model ID.

A new Fixed Surface Type processing has been added to NGRB2PCG32 to processes Potential Vorticity Surfaces and to show the distance the PV level is above or below the Tropopause. The new PV level is prefixed with the ‘P’ letter a ‘+’ or ‘-’. As an example:

P+05 = PV level 500 ft above the Tropopause
P-15 = PV level 1500 ft below the Tropopause

-- Processing Ensemble Probability GRIB data

NGRB2PCG32 now has the ability to process Ensemble Probability GRIB data files. Ensemble probability GRIB file are completely different in the data they contain when compared to regular GRIB data. With regular GRIB data, the data area contains data points that reflect the value of the parameter they are associated with. For example, a GRIB message for Temperature data (TEMP) will contain data values of actual temperature measurements and so on with pressure, height, etc. However, for probability GRIB messages, the data area contains percentages of probability, ranging from 0% to 100%, of the likelihood a specific value of that parameter will occur. Those probabilities are in three possible groups:

1 = Probability of event below lower limit
2 = Probability of event above upper limit
3 = Probability of event between lower and upper limits

Associated with these messages are either one or two numbers which define the limit(s) of the parameter the GRIB message is associated with.

To accommodate the special processing requirements associated with ingesting Ensemble Probability GRIB data so it will work within the structure of the WINGRIDDS data model, NGRB2PCG32 uses a special GRIB2-to-Parameter decoding file. This file, GRIB2EnsProbParm.DAT, is used instead of the regular GRIB2Parm.DAT file. The file structure is the same. See the example below:

```
000 000 000 TMP                     TEMPerature (deg K converted to deg C by WINGRIDDS)
000 001 008 TPC       0000  -3 Total PreCiPitation (m converted to cm in WINGRIDDS)
000 001 015 SNO                     Large scale snow   kg m**-2
```

There may be multiple parameters of the same name on the same surface in the same forecast hour but with different value thresholds. Therefore, what happens, is when NGRB2PCG32 comes across the first example of a specific parameter within a specific forecast hour, it adds a ‘1’ to the end of the parameter
name i.e. the first GRIB message of temperature (TMP) becomes TMP1 and if it later comes across another GRIB message of temperature, that parameter name becomes TMP2 and so on. If the number of similar parameters exceeds 9, the extension will go from the letter ‘A’ and continue incrementing till it gets to ‘Z’ (TMPA, TMPB, - TMPZ). This process will occur for every unique parameter name, regardless of surface level, for that forecast hour. When the next forecast hour is processed, the extension cycle starts over at the number ‘1’.

Unfortunately, there is no way of telling the parameter limit values that are associated with the parameters by just the name alone. However, from within WINGRIDDS, when one looks at the Grid File Listing of an Ensemble Probability data file, the limit values for each parameter are show as in the figure below:

![Grid File Contents](image-url)
In addition, when an Ensemble Probability parameter is displayed on the screen, at the bottom-left corner of the screen, the limit values are shown there as well as in the figure below:

![Screen capture showing Ensemble Probability with limit values](image)

It is presumed that only one probability parameter will be displayed on the screen at one time.

-- Types of GRIB data

Several types of GRIB data are available to the WINGRIDDS user: WAFS (global data), NWS and NWS - MOS. Because the data are structured differently, the ingest procedures for the data types are different. The selected ingest procedure which is displayed in the title of the ‘Ingest GRIB Data’ menu must match the data type that is ingested.

WAFS

Data for global grids (WAFS data) are subdivided into octets (I,J,K,L,M,N,O,P). This data must be preprocessed to create an inventory and list of model runs available for conversion from GRIB to WINGRIDDS format. Only one model run may be converted to WINGRIDDS format in a single ingest session. WAFS GRIB data is preprocessed and converted to WINGRIDDS format using the utility GRIB2PCG32.EXE. If any problems or errors occur while using GRIB2PCG32, please refer to the file GRIB2PCG32.OUT.

NWS

Data for the entire grid are stored together as a single group in NWS GRIB data files. No preprocessing of NWS GRIB data is necessary before the data are converted to WINGRIDDS format. Multiple model runs may be converted from GRIB to WINGRIDDS format in a single ingest session. The conversion utility is called NGRB2PCG32.EXE. If any problems or errors occur while using NGRB2PCG32, please refer to the file NGRB2PCG32.OUT.

MOS

Data for the entire grid are stored together as a single group in MOS GRIB data files. No preprocessing of MOS GRIB data is necessary before the data are converted to WINGRIDDS format. However, the data parameters for a MOS file are different than a NWS file so a different ingest utility is required. Where the GRIBPARM.DAT file is used in the NWS ingest process, a new file, MOSGRIBPARM.DAT is required to process MOS GRIB files. Multiple model runs may be converted from GRIB to WINGRIDDS format in a single ingest session. The conversion utility is called NMOSGRB2PCG32.EXE. If any problems or errors occur while using NMOSGRB2PCG32, please refer to the file NMOSGRB2PCG32.OUT.

-- Selecting the method used to process GRIB data within WINGRIDDS

The procedure used to convert GRIB data to WINGRIDDS format differs for NWS, NWS-MOS and WAFS data. The selected procedure MUST match the type of GRIB data that you process.
To select the appropriate Ingest process within WINGRIDDS, under the ‘File’ Menu selection, select either the ‘Convert WAIFS GRIB Data’ or ‘Convert Non-WAFS GRIB Data’, whichever is appropriate for your situation. ‘Convert Non-WAFS GRIB Data’ (see figure below) shows a sub-Menu which lists ‘Convert Regular GRIB Data’ and ‘Convert MOS GRIB Data’. Because of the way Ensemble GRIB are processed, they are included with the Regular GRIB selection. When ‘Regular GRIB’ is selected, the utility NGRB2PCG32 is executed and when ‘MOS GRIB’ is selected, NMOSGRB2PCG32 is executed. Both of these utilities have debug message files created under their respective names with the “.OUT” extension. If any problems are encountered when running these utilities, please refer to the “.OUT” file to help show what the problem was.
-- Automated GRIB Ingest

GRIB data can be ingested automatically when the GRIB Ingest utilities are called from within a batch file routine. For Regular and MOS GRIB files, the NGRB2PCG32 and NMOSGRB2PCG32 utilities can be executed directly without any command arguments. See the “WAFS GRIB Data Ingest” portion of this document for the automatic download instructions of this data.

Detailed configuration & use of automation scripts and scheduling tasks for stand-alone Workstations or Workstation/Server system configurations are given in the Workstation/Server Setup section.

WAFS GRIB Data Ingest

The following steps show you how to manually convert WAFS data encoded using a Gridded Binary format (GRIB) to WINGRIDDS format. WAFS GRIB data can be ingested in a manual mode or automatic mode. The following instructions show the steps for manual WAFS GRIB ingest. At the end of these instructions, the automatic method is explained.

-- Starting the manual ingest process

With the selection of ‘Convert WAFS GRIB Data’ from the ‘File’ Menu selection, the ‘WAFS Area Selection Menu’ is displayed (see figure below).
As in PCGRIDDS/PCGRIDDS32, the user must select which WAFS Octets they wish to ingest and select the orientation of the grid. The 3-letter groups in the left column refer to the 3-letter extension of the OCTETS.*** files in the WINGRIDDS/GRIB directory. These files contain octet selection and grid orientation information. The GRIB2PCG32 WAFS GRIB Ingest utility uses this information when performing the WAFS GRIB ingest.

If you initially decide to convert part of your GRIB data to WINGRIDDS format, you may convert additional data at a later time.

As long as the new GRIB data you select covers the same area and was produced from the same model run as the initial data, the ingest program adds new variables to the existing file without reprocessing or overwriting the variables currently in the file.
If you select a new area but the GRIB data are from the same model run, then the ingest program produces a new file with the same name, but modifies the last letters of the extension to reflect the different octants. For example, if the initial WINGRIDDS file is MAR150312.AVN-JKLI, the next files may be named MAR150312.AVN-IJKL or MAR150312.AVN-LIJK.

If the GRIB data are from a different model run, then a new WINGRIDDS file is produced and named according to the model run. For example, if the last file produced is MAR150312.AVN-JKLI, then the first file from the next model run is named MAR160300.AVN-JKLI.

-- Select Area for Gridded Data Set
The surface of the earth is divided into eight areas (octants) identified by the labels I,J,K,L,M,N,O,P. You must specify the area that is covered by the gridded data set you are creating from the GRIB data. If you do not select a new area, then the area you selected for the last gridded data set is used. Only those GRIB data octants within the selected area are included in the WINGRIDDS data set.

The menu displayed on the screen lists the areas available for the conversion process. The required octants are listed for each entry. GRIB data for all octants required by the selected area must be placed in the GRIB/WAFS/OCTANT* directory where the “*” denotes the Octant letter. If any required octants are missing for a field, GRIB data for that field will not be converted to PCG format.

The location of each octant is described below:

<table>
<thead>
<tr>
<th>Octant</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0- 90N</td>
<td>30W - 60E</td>
</tr>
<tr>
<td>J</td>
<td>0- 90N</td>
<td>60E - 150E</td>
</tr>
<tr>
<td>K</td>
<td>0- 90N</td>
<td>150E - 120W</td>
</tr>
<tr>
<td>L</td>
<td>0- 90N</td>
<td>120W - 30W</td>
</tr>
<tr>
<td>M</td>
<td>0- 90S</td>
<td>30W - 60E</td>
</tr>
<tr>
<td>N</td>
<td>0- 90S</td>
<td>60E - 150E</td>
</tr>
<tr>
<td>O</td>
<td>0- 90S</td>
<td>150E - 120W</td>
</tr>
<tr>
<td>P</td>
<td>0- 90S</td>
<td>120W - 30W</td>
</tr>
</tbody>
</table>

-- ECMWF WAFS GRIB Processing

GRIB2PCG32 now has the ability to process ECMWF WAFS grids. This is important because ECMWF WAFS grids do *not* conform to WMO WAFS area definitions, but they are similar and will be explained below.

ECMWF WAFS Grids –
The grid sections for the ECMWF WAFS grids are composed of 12 octant-like sections covering the globe but only 8 are used in GRIB2PCG32. Sections 1-4 cover the northern hemisphere, sections 9-12 cover the southern hemisphere and sections 5-7 cover a 70 degree belt around the equator (+/- 35 deg latitude). Sections 5-8 are not processed by GRIB2PCG32. Also, the grid section areas cover slightly different areas of the globe as shown below.
The graphics show there is a 30 degree west longitude offset between the WMO WAFS grids (on top) and the ECMWF WAFS grids (on bottom). The ECMWF graphic also shows the WMO octant letter ID’s which the ECMWF data are mapped to. Therefore, the WMO octant letters which are selected to tell GRIB2PCG32 which grids to ingest & process are mapped to the ECMWF grid numbers.

Another difference between the WMO & ECMWF is the grid spacing. The WMO standard is a 1.25 deg grid spacing and the ECMWF has 2.5 deg grid spacing.

--- Convert WAFS GRIB Data to WINGRIDDS Format
After your GRIB data are stored in the GRIB\WAFS/Octant* directories, you are ready to preprocess the GRIB data to produce an inventory and list of model runs to be included in the gridded data set and convert your GRIB data to PCG format. The WAFS GRIB preprocessing used to be a separate utility in PCGRIDDS. In WINGRIDDS, that function has been incorporated within the GRIB2PCG32 ingest utility.
Use the following steps to proceed with the conversion process:

The use may double-click on any entry within the ‘WAFS Area Selection Menu’ area or single-click a selection to highlight and click the ‘Ingest’ button. GRIB data are preprocessed and inventoried before they are converted to PCG format. This procedure may require a significant amount of time if you are processing a large quantity of data. The Ingest process runs outside of the WINGRIDDS application so other WINGRIDDS tasks may be run at the same time. Once The GRIB Ingest process is complete, the window it was running in is closed. The data are now ready to be used in a WINGRIDDS session.

After the conversion is complete, the data files in PCG format are placed in the directory, \\WINGRIDDS\GRIDDATA, and are available for display by WINGRIDDS (refer to ‘Sample WINGRIDDS Applications Session’).

Note: All GRIB files are left unchanged after the PCG file is created.

--Automated WAFS GRIB Data Ingest

The WAFS GRIB ingest process can be performed through a batch file for automatic execution. Within the batch file, GRIB2PCG32.EXE routine can be called from the command line with an Octets definition file listed in \\WINGRIDDS\GRIB as a command argument. See the example below:

GRIB2PCG32 OCTETS.PL2

This command string will execute the GRIB2PCG32 utility and it will ingest octets P & L. The user can select which OCTETS.*** file to use according to their needs.

As with the automatic GRIB Download, the GRIB Ingest scheduling is done through the Microsoft Windows Scheduler (refer to Microsoft Windows documentation for operation and configuration of the Scheduler).

Downloading Observation Data

WINGRIDDS works off of GRIB model data or Observation data and that data must be transferred into the WINGRIDDS system to be converted into PCG data format. This section will only cover Observation data.

Observation data is available in 2 groups of data: 1)ASCII (text) format Surface or Upper-Air data and 2) some observation-based BUFR format files. With the BUFR data, it must be noted these are ‘observation’ BUFR files and *NOT* GRIB forecast-based BUFR files which cannot be processed. In case you are not familiar, a single GRIB-based message contains data which covers a broad area of the earth however, the BUFR format contains data for a single point on the earth and this can be an observation data point or a forecast data point. A single BUFR file can contain thousands of single-point data records.

For ASCII-based observation files, Surface report types come in several different varieties such as METAR (or SAO), Synoptic, Buoy or Ship reports and Upper-Air reports are reported in RAOB format. All of these messages are in text format and are downloaded into their respective subdirectories in the OBS directory. Surface reports are usually available for every hour of the day but Upper-Air (RAOB) reports usually are
only available at 00Z & 12Z. Therefore, it is possible to mix and match the Surface obs times with the
Upper-Air obs times. This information is reflected in the corresponding file name created when observation
data is ingested and converted with the OBS2PCG.EXE utility covered later.

For BUFR binary data files, OBS2PCG can only process observation-based BUFR data files and there are
also some observation BUFR files it cannot decode due to processing limitations. Below is a list of the
base file names used on the NCEP servers which OBS2PCG can decode ("?" denotes incomplete
description info):

Surface Obs-
metars.buf METAR-based obs
adpsfc.buf Synoptic-based obs (?)
sfcshp.buf Surface Ship obs
marine.buf Surface ship/buoy obs (?)

Upper-Air/non-surface Obs-
vadwnd.buf NEXRAD VAD winds
proflr.buf Profiler Winds
adpupa.buf RAOBs
satwnd.buf Satellite-based wind obs (over ocean)
qkswnd.buf Quicksat surface radar winds (over ocean)
qkscat.buf QuickScat surface radar winds (over ocean)
goesfv.buf Processed GOES-based Satellite Sounder obs
atovs.buf Processed Polar-based Satellite Sounder obs

Below is a list of the base file names used on the NCEP servers which OBS2PCG can **NOT** decode:

trmm.buf Rain Rate obs (over ocean)
wndsat.buf WindSat obs – dead platform
gspro.buf CHAMP radio occultation data
deoimr.buf Processed GOES Imager Tb data
prepbufr.buf unknown format issues
rssda.buf raw HIRS-1 1b format
1bamua.buf raw amsu-a 1b format
1bamub.buf raw amsu-b 1b format
1bhrs3.buf raw hirs-3 1b format
1bhrs4.buf raw hirs-4 1b format
1bmhs.buf raw MHS Tb data (NOAA-18, METOP-2)
dairsev.buf raw AIRS/AMSU-A/HSB 1b DATA (AQUA)
amrsre.buf raw AMSRE-E Channel data
mtiasi.buf unknown data
osbuv8.buf unknown data
sptgrmm.buf unknown data – possible TRMM as above.
aircft.buf AIRCAR (Commercial aircraft) obs (?)

The BUFR data processing can be combined with the regular text-based obs files to improve the Barnes
Analysis and final data output. *HOWEVER*, it was found during testing the text-based surface data was
more complete as compared to the BUFR data and it is not advised to mix the two observation types
together. It was found that the best final product used text-based surface obs combined with BUFR-based
non-surface obs. It must also be noted that the GOES & Polar Processed Sounding files are very large and
may take a long time to download & process – depending on your internet and computer CPU speed.
When downloading BUFR data files onto your PC, the surface-based files can be transferred to their appropriate “OBS\Surface” subdirectories within WINGRIDDS i.e.: metars.buf – type files can go into the METAR directory, sfcshp.buf – type files can go into the Ship directory, etc. However, due to the different way the text-based RAOB obs are processed, it was required that a BUFR directory be created under the “OBS\UpperAir” directory and *ALL* non-surface BUFR files need to be stored for processing within this directory…even the adpupa.buf – type RAOB BUFR files.

WINGRIDDS uses the GETGRIB utility build the FTPDATA.BAT batch file using user configured data files within the WINGRIDDS/GRIB/USER directory and executes the Curl utility to perform the actual transfer of downloading Observation data files via the Internet or local intranet. The Observation data transfer process can be performed from within WINGRIDDS while WINGRIDDS is executing or it can be done in an automated function during off hours through scheduled batch file execution using user created batch files and the Microsoft Windows Scheduling task. This process is covered in more detail below.
Under the second selection of the ‘File’ Menu, select ‘Download Observation Files’. See the figure below.
Upon choosing a ‘Download Observation Files’, brings up the Observation Download Category:

This displays the contents of a file which is configurable by the user (refer to ‘Customizing the Data Download Process’). The user can double-click on a selection or single-click a selection to highlight and Click the ‘OK’ button.
Upon the selection by the user, the ‘Observation Download Selection’ window is displayed. See the figure below.

The Observation Download Selection windows lists the individual data file names and descriptions for doing a Surface and/or Upper-Air download job. These files are also configurable by the user (refer to ‘Customizing the Data Download Process’). The user can double-click on a selection or single-click a selection to highlight and Click the ‘OK’ button.

Upon this action, the Observation download utility will begin and open a separate window to show the progress of the file download. If the user is running WINGRIDDS, that window can be iconized or placed in the background so WINGRIDDS operations can resume.
-- Automated Observation Data Downloading

The user can create batch files to execute the GETGRIB utility using the Microsoft Windows Scheduler to
time when the batch file will. The commands for the batch file are as follows:

GETGRIB "user file".DAT

Where the “user file” is a ‘.DAT’ file which holds the commands for downloading the specific Surface and/or
Upper-Air files the user wants. This file name is the same as what is listed in the left column in the
Observation Download Selection window (refer to ‘Customizing the Data Download Process’).

Detailed configuration & use of automation scripts and scheduling tasks for stand-alone Workstations or
Workstation/Server system configurations are given in the Workstation/Server Setup section.

-- Ingesting Observation Data

As the name implies, WINGRIDDS works off of gridded data. Therefore, WINGRIDDS cannot work with
the textual observation data directly. It must convert the textual surface and upper-air observation data to
WINGRIDDS rapid-access format before any data can be displayed. This process is referred to as
ingesting Observation data and this is where the Observation ingest utility OBS2PCG.EXE is used. The
use of this utility will be covered in a separate section below.

The WINGRIDDS-format files created with these new GRIB ingest utilities are not compatible with the DOS
versions.

The PCG Version 2 observation-based files have a similar but different naming convention to the GRIB-
based PCG data files. WAFS and regular Non-WAFS files still have their differences. A WAFS file would
have a name such as:

Surface only: MAR1503S12.OBS-JKLI
- MAR - Month
- 15 - Day of month
- 03 - Year (last two digits)
- S - Surface Data
- 12 - Hour of Observation
- OBS - Shows Observation-type Data
- J KLI - Octants included in Observation ingest

Surface and Upper Air at different times: MAR1503S16U12.OBS-JKLI
- MAR - Month
- 15 - Day of month
- 03 - Year (last two digits)
- S - Surface Data
- 16 - Hour of Observation
- U - Upper-Air Data
- 12 - Hour of Observation
- OBS - Shows Observation-type Data
- J KLI - Octants included in Observation ingest
Or for Regular Grid-type Surface only files: NOV0703S06.OBS211
where:

- **NOV** - Month
- **07** - Day of the Month
- **03** - Year (last two digits)
- **S** - Surface Data
- **06** - Hour of Observation
- **OBS** - Shows Observation-type Data
- **211** - Grid Projection Number

Or for Regular Grid-type Surface and Upper-Air files: NOV0703S06U00.OBS211
where:

- **NOV** - Month
- **07** - Day of the Month
- **03** - Year (last two digits)
- **S** - Surface Data
- **06** - Hour of Observation
- **U** - Upper-Air Data
- **12** - Hour of Observation
- **OBS** - Shows Observation-type Data
- **211** - Grid Projection Number

Selecting Options used to process Observation data within WINGRIDDS

The procedure used to convert Observation data to WINGRIDDS format differs from the GRIB conversion due to the nature of the data. The data is in ASCII text in a specific WMO (World Meteorological Organization) format which means there are specific Carriage-Returns and Line-Feeds inserted at the beginnings of every observation message which the ingest utility searches for to know the start of an individual observation.
To select the Observation Ingest process within WINGRIDDS, under the ‘File’ Menu selection, choose the ‘Convert Observation Data’ menu selection (see figure below).
Upon this selection, the ‘Convert Observation Data’ dialog is opened (see figure below).

If the data to be ingested is not current, the user must select the proper day of the month and observation time which is the same as the data which was downloaded. If only surface data or upper-air data is to be ingested, select only the proper category to be ingested. If both surface and upper-air data is to be processed, select both categories and the proper time selection for each data type.

-- NOTICE*****
The Date-Time information within the observation messages only includes the day and hour of the observation. There is no month or year data. Therefore, it is possible for the WINGRIDDS operator to ingest data from May 21, but the current month may be July 21. The ingest utility will not be able to know any difference and as long as the observation times fall within the requested time, the PCG data file created will have the *current* year, month and day assigned to the file name.
-- Observation Grid Selection
The observation data must be mapped to a proper grid projection for the Barnes Analysis. The user must choose if the observation data will be mapped to a standard NWS-type grid or a WAFS-type grid(s). The NWS Grid ID will default to a preselected value which is set in the WINGMODE.DAT file.

For more information about changing the configuration of WINGRIDDSS, see the Customizing the WINGRIDDSS System section.

If the user wishes to use a NWS-type grid projection, the proper number from 1-255 should be entered in the window. All NWS grid ID descriptions are available in the GRIB1 documentation under the ‘HELP’ section.

If the user wishes to use a WAFS-type grid projection, the user must enter the proper letter(s) which identify the WAFS grid octant(s) (IJKLMNOP).

NOTICE**** Remember, as with the GRIB WAFS ingest process, if needing more than one WAFS octant, the octant order *must* be ordered from Left to Right, Bottom to Top.

-- Observation Data File Editing
WINGRIDDSS now has the ability to edit observation data files if data errors are found after initial processing is performed. If the user, while viewing observation data, saw spurious data contour ‘bulls-eyes’ in the analysis, this was an indication that there was a data parameter being misreported in the data from an observation station. The user would have to go outside WINGRIDDSS, search for that specific data file and open it with a text editor to search for the reporting station which contained the bad data and either correct the data value or change it to a ‘missing’ value of -9999. Now, WINGRIDDSS has its own text editor which will automatically open the current observation data file when executed. This editor is located within the ‘Convert Observation Data’ dialog.

When an observation data file is opened within WINGRIDDSS and it is determined the contents need to be edited follow these simple steps:

1) On the WINGRIDDSS Plan display, locate the geographic area where the spurious data bulls-eye is located and note the parameter which is displayed (TEMP, HGHT, etc.)
2) Type the command ‘STID’ to show the reporting stations and find the station IDs in the area of the bad data.
3) Open the ‘Convert Observation Data’ dialog and click the ‘Edit’ button to open the Observation Data Editor (see below).
4) Perform a search for the station ID. Refer to the WINGRIDDSS documentation for the data layout of the observation data file.

5) Once the station is found and the data value is seen, either correct the data value or replace the value with the 'missing' value of -9999.

6) Save the file and, from within the 'Convert Observation Data' dialog, check the 'Reanalyze' button and reprocess the observation data with the corrected data value and the data bulls-eye should be gone.
With the many additional observation data sources added in the BUFR capability, the resulting Obs Text data file, which is stored in the WINGRIDDS\GRIDDATA\OBS directory, has become much larger and new data separators are needed to separate the different observation types. As before, the string "**** 99999 - 99999.99..." is written to show then end of surface obs & the start of RAOB observations. At the end of any RAOB obs though, the new BUFR data is added – each observation type within its own section. The next data separators are written as:

**** 11111 - 99999.99 ..." QKSAT Surface Wnd observations.
**** 22222 - 99999.99 ..." NEXRAD VAD/Profiler observations.
**** 44444 - 99999.99 ..." Satellite Wnd observations.
**** 55555 - 99999.99 ..." Satellite Soundi ng observations.

The data collected & concatenated within the Obs Text data file are different, depending on the platform type which reported, thus the different data sections. Below are short examples of the different data types with short explanations of the contents for each.

Surface QKSAT obs are listed on a single line with the standard “WNDSAT” label observation ID, Lat/Lon, Wind Direction/Wind Speed entries as follows:

WNDSAT 0000001W 56.68 154.10 259.00 2.80
WNDSAT 0000002W 56.69 154.32 270.00 3.00
WNDSAT 0000003W 56.71 154.53 258.00 3.30

NEXRAD VAD/Profiler entries are in a similar format to the RAOB entries with Mandatory Level and Significant Level sections. However, Temperature & Dewpoint entries are always missing and only Wind Speed/Wind Direction are listed. Each observation has a standard “VADPRF” label.

VADPRF 701 64. 259. -9999.00 -9999.00 -9999.00 -9999.00 -9999.00
6. 144. -9999.00 259.00 1259.00 108.00 1.00
32. 150. -9999.00 -9999.00 -9999.00 -9999.00 -9999.00
27. 100. -9999.00 -9999.00 -9999.00 -9999.00 -9999.00

The data collected & concatenated within the Obs Text data file are different, depending on the platform type which reported, thus the different data sections. Below are short examples of the different data types with short explanations of the contents for each.
Next, Satellite Cloud-Track Winds have single-line entries the standard “SATWD” label observation ID, Lat/Lon, Pressure Level, Height, Temperature, Dewpoint (always ‘Missing’), Wind Direction/Wind Speed entries as follows:

SATWD C100002I 47.45 34.84 400.00 7184.37 -35.67 -9999.00 190.00 19.20
SATWD C100003I 47.40 34.65 400.00 7184.37 -35.27 -9999.00 190.00 20.40
SATWD C100004I 47.53 32.53 400.00 7184.37 -34.01 -9999.00 210.00 24.40
SATWD C100005I 47.23 31.63 300.00 9163.38 -45.81 -9999.00 214.00 24.30
SATWD C100006I 46.67 33.50 500.00 5567.28 -18.54 -9999.00 205.00 25.60

Finally, Satellite Sounding section is formatted similar to the RAOB entries with Mandatory Level and Significant Level sections. However, Wind Speed/Wind Direction entries are always missing and only Temperature & Dewpoint are listed. Each observation has a standard “SATSND” label and there is no differentiation between a polar satellite sounding obs and a geostationary satellite sounding obs.

SATSND = 806561
-38.49 61.95 0.00
12
64. 1019.90 0.00 15.44 -9999.00
32. 1000.00 88.66 18.84 13.38
32. 925.00 298.70 14.94 9.78
32. 850.00 662.09 10.67 6.50
32. 700.00 880.94 3.09 -4.68
32. 500.00 1012.20 -12.34 -21.11
32. 400.00 532.43 -23.37 -32.04
32. 300.00 1074.77 -39.23 -45.48
32. 250.00 998.60 -132.86 -146.61
32. 200.00 894.78 -139.48 -152.00
32. 150.00 1117.29 -141.48 -153.63
32. 100.00 531.31 -143.60 -155.38
21
64. 1019.90 0.00 15.44 -9999.00
4. 950.00 436.55 16.35 10.96
4. 920.00 271.13 14.65 9.54
4. 780.00 709.17 6.81 0.60
4. 670.00 352.97 1.18 -7.83
4. 620.00 618.56 -2.56 -12.50
4. 570.00 661.58 -6.16 -16.52
4. 475.00 389.71 -14.86 -22.03
4. 430.00 745.15 -19.93 -26.90
4. 350.00 962.00 -30.71 -38.90
4. 335.00 405.54 -141.85 -153.94
4. 115.00 613.65 -142.98 -154.86
4. 85.00 616.63 -143.48 -155.27
4. 70.00 739.33 -142.66 -154.61
4. 60.00 592.35 -141.10 -153.32
4. 50.00 707.43 -140.10 -152.51
-- Reanalyze Observation Data
There may be times when a previous observation data set would need to be reanalyzed. This would fall under the following two categories:

1) Correction of erroneous data – after processing a set of observation data, the user may find some erroneous observation data from a station which is causing the Barnes Analysis to create incorrect contour bulls-eyes in the analyzed data. This can be corrected when the user goes and edits the associated observation data file in the GRIB\OBS directory and, once the station is found, either enters the correct data or deletes the incorrect data parameter by replacing the bad value with -9999.00. This will be flagged as "missing" data and ignored when the data is scanned during the Reanalysis operation. Once the data file is corrected, select the proper Date-Time and the same grid selection and select 'Reanalyze' and the OBS2PCG process will reprocess the observation data in the corrected data file saving the data to the same file name as before, overwriting the previous processed data.

2) Mapping processed data to a different grid map – If the user wishes to have a previously processed observation data set mapped to a different grid projection, the whole data ingest process does not need to be repeated. Simply select the proper Date-Time for the data requested, the new grid selection and select 'Reanalyze' and the OBS2PCG process will skip parsing the raw obs data and utilize the observation which are already in the GRIB\OBS data file for the Date-Time selected.

-- Automated Observation Data Ingest
Observation data can be ingested automatically when the Observation Ingest utility OBS2PCG.EXE is called from within a batch file routine. See complete instruction on p.123.

Detailed configuration & use of automation scripts and scheduling tasks for stand-alone Workstations or Workstation/Server system configurations are given in the Workstation/Server Setup section.

Downloading ASUS Frontal Data
WINGRIDDS can now download and display the ASUS Frontal position data files – both the regular and Hi-resolution versions. All of these messages are in text format and are downloaded into the SURFACE/FRONT directory. Frontal reports are usually available every 3 hours during the day.

WINGRIDDS uses the GETGRIB utility build the FTPDATA.BAT batch file using user configured data files within the WINGRIDDS/GRIB/USER directory and executes the cURL utility to perform the actual transfer of downloading ASUS Frontal Position data files via the Internet or local intranet. The ASUS Frontal Position data transfer process can be performed from within WINGRIDDS while WINGRIDDS is executing or it can be done in an automated function during off hours through scheduled batch file execution using user created batch files and the Microsoft Windows Scheduling task. This process is covered in more detail below.
Under the third selection of the ‘File’ Menu, select ‘Download Frontal Position Files’. See the figure below.
Upon choosing a ‘Download Frontal Files’, brings up the Frontal Position Download Category:

This displays the contents of a file which is configurable by the user (refer to ‘Customizing the Data Download Process’). The user can double-click on a selection or single-click a selection to highlight and Click the ‘OK’ button.
Upon the selection by the user, the 'Frontal Position Download Selection' window is displayed. See the figure below.

The Frontal Position Download Selection windows lists the individual data file names and descriptions for doing a Frontal Position download job. These files are also configurable by the user (refer to ‘Customizing the Data Download Process’). The user can double-click on a selection or single-click a selection to highlight and Click the ‘OK’ button.
Upon this action, the Frontal Position download utility will begin and open a separate window to show the progress of the file download. If the user is running WINGRDDS, that window can be iconized or placed in the background so WINGRDDS operations can resume.

--- Automated ASUS Frontal Position Data Downloading

The user can create batch files to execute the GETGRIB utility using the Microsoft Windows Scheduler to time when the batch file will. The commands for the batch file are as follows:

GETGRIB "user file".DAT

Where the “user file” is a ‘.DAT’ file which holds the commands for downloading the specific Surface and/or Upper-Air files the user wants. This file name is the same as what is listed in the left column in the Frontal Position Download Selection window (refer to ‘Customizing the Data Download Process’).

Detailed configuration & use of automation scripts and scheduling tasks for stand-alone Workstations or Workstation/Server system configurations are given in the Workstation/Server Setup section.
Using WINGRIDDS

This section provides background information on WINGRIDDS. It should be noted, as in PCGRIDDS32, there is no longer a WAFS version and NWS version of WINGRIDDS as there were in PCGRIDDS. WINGRIDDS processes and displays WAFS as well as Regular grids interchangeably. Therefore, there is no need to switch back and forth as was the case in DOS PCGRIDDS.

-- Modes of Operation
In WINGRIDDS, there are two modes of operation.

User Mode
In User Mode you perform tasks such as displaying products, retrieving data, and modifying parameters by selecting choices from predefined options or you display fields and the full variety of diagnostic calculations by entering WINGRIDDS commands directly from the keyboard in the Command Line.

Automatic Mode
In Automatic Mode you display fields and the full variety of diagnostic calculations by starting WINGRIDDS, loading up to 35 data files and executing a single command macro from a batch file. GRIB file downloading and Ingesting can also be performed.

During the execution of PCGRIDDS/PCGRIDDS32, you had to switch between the Menu mode and the Command Mode. In WINGRIDDS, Menu mode and Command mode have been blended into one operational environment. There is also a Tool Bar with frequently used buttons to ease the operation of WINGRIDDS. The WINGRIDDS Desktop will be explained below.
-- WINGRIDD Desktop

The WINGRIDD Desktop has (from top down) pull-down menus, a tool bar, command entry, display area and status bar.

WINGRIDD in Single Panel (1PNL) Mode
WINGRIDDs in 4 Panel (4PNL) Mode (without Window Banner)
WINGRIDDS in 4 Panel (4PNL) Mode (with Window Banner)

There are 5 menu options across the top.

File
Download and Ingest GRIB files, select, change, or list the contents of a forecast data file and Exit WINGRIDDS.

Products
Display predefined WINGRIDDS products.

Specs
Define the forecast hour and vertical level specifications.

Display
Change to or define one of the following display modes: Plan view (default), Cross-section, Time-section.

Help
Display Help files for WINGRIDDS Operations.
Command Line – Enter WINGRIDDS commands
Open File – Opens PCG Data files which have been through the GRIB Ingest Process
Change Forecast Files – Switches between multiple opened PCG Data files
List File Contents – Lists all GRIB parameters in the current PCG file for the active forecast time
Print Screen – Prints the contents of the display area to the default printer
Overlay Display – Overlays the next issued command with what is on the screen
Previous Command – Executes the previous command
Erase Map – Erases the display area & leaves a blank map
Decrement Forecast Hour – Decrement forecast hour by one step
Increment Forecast Hour – Increment forecast hour by one step
Decrement Grid Level – Steps Grid level farther from the surface (Lower in pressure)
Increment Grid Level – Steps Grid level closer to the surface (Higher in pressure)
Decrement Forecast File – Activates the previous loaded forecast file (if previously opened)
Increment Forecast File – Activates the next loaded forecast file (if previously opened)
Station Observation Data Plot – Plots the Observation data in Station Model format
Frontal Position Data Plot – Plots the ASUS Frontal position data if available at observation hour.
Map Zoom Out – Zooms the map display out for a wider view
Map Zoom In – Zooms the map display in for a narrower view
Pan Map West – Moves the map field of view toward the West
Pan Map East – Moves the map field of view toward the East
Pan Map North – Moves the map field of view toward the North
Pan Map South – Moves the map field of view toward the South
Choose PLAN Display – Switches to PLAN Display (default)

Choose CROSS Display – Switches to CROSS-Section Display (if configured)

Choose TIME Display – Switches to TIME-Section Display (if configured)

Switch Between 1Panel/4Panel Mode – Changes the display format between 1Panel & 4 Panel mode

Select Window 1 – Moves command focus to Window 1 in 4PNL mode (Default in 1PNL mode)

Select Window 2 – Moves command focus to Window 2 in 4PNL mode

Select Window 3 – Moves command focus to Window 3 in 4PNL mode

Select Window 4 – Moves command focus to Window 4 in 4PNL mode

GO – Executes Commands and Macros

STOP – Halts execution of Macro Loops

Command History – Redisplays recent commands in the command line:

= Step Back one command

= Step Forward one command

Status Line – Real time display of grid, time and file status

Using Custom Grid/Maps

Custom Grid/Map Mode –

A limitation of the program since PCGRIDDS has been, the program can only overlay gridded data which has the same geometric grid mapping. In other words, if you have multiple data files open for analysis, their data can only be overlaid if they all had the same grid projection i.e. Lat/Lon data used with other Lat/Lon data, Lambert Conformal data used with other Lambert Conformal data, etc. You could not mix-and-match viewing data from different grid projections. Also, with the original PCGRIDDS, the different gridded files even had to have the same grid resolution as well as grid projections but this requirement was relaxed in WINGRIDDS. Now, in this WINGRIDDS v4 release, the user can create custom grid mapping projections for their use and any gridded data file opened will be remapped to the user’s grid projection and allow the overlay of gridded data from different grid projections as long as the original data had the same geographic coverage. This is referred to a data interpolation.

There are, at this time, 3 different grid projections you can use to interpolate data to;

Equidistant Latitude/Longitude (Lat/Lon) - best for near the Equator region (0-30 deg)
Lambert Conic Conformal (NLCC) – best for the mid-latitudes (30-60 deg)
Polar Stereographic (NPST) – best for above 60 deg to the Poles.

There are two different ways to set up a custom grid display and this can be done either before or after any data files have been opened – there is a command-line option or it can be done through a graphical dialog.

Customized Grid Command-Line:

The command to set up a customized grid (for use with command macro scripts & such) is:

CSTMGRID [Center Lat, Center Lon, Blowup Size, (Tangent Cone), Grid Type]

Or

CSTMGRID [Grid Spec File Name]
Notice, this is argument string is similar to the AREA command. There are two different command string argument types with this command – depending on which grid projections you wish to use. For Lat/Lon & Polar Stereographic grids, you would use the Center latitude, Center Longitude, Blowup Size & Grid Type arguments however, the Lambert Conformal also requires a Tangent Cone (in degrees) entry as well. As with the AREA command, the coordinate information is describing the *center* of the grid and the *size* (in N/S Latitude) of the grid.

*****NOTICE*****
1) All 4 numeric entries are to be entered in *WHOLE* degrees a period.

2) All negative Latitude entries are for Southern Hemisphere and positive Latitude are Northern Hemisphere.

3) ALL negative Longitude entries are for Western hemisphere and all positive Longitude are for Eastern Hemisphere.

4) All Lambert Conformal identities for Grid Type are “NLCC” – even for Southern Hemisphere Views.

5) All Polar Stereographic identities for Grid Type are “NPST” – even for Southern Hemisphere Views.

Examples…

To create a custom Lambert Conformal (NLCC) grid roughly centered on the United States, enter:

CSTMGRID 40. -100. 45. 25. NLCC

To create a custom Lat/Lon (LTLN) grid over Saudi Arabia, enter:

CSTMGRID 20. 45. 50. LTLN

To create a custom Polar Stereographic (NPST) grid over Northern Europe, enter:

CSTMGRID 60. 12. 60. NPST

The Command-Line entry to disable Custom Grids is:

CSTMGRID 9999

At this command, the custom grid settings will be removed and the grid navigation of whatever is the current data file is will be used at the areal size configured for the Custom Grid.
Customized Grid User Graphical Dialog:

Customized grids can also be set up through the Plan Area Setup dialog.

Notice, a new button has been added called “Custom Grid”. This opens up a new dialog called WINGRIDDS Custom Map Selection. This dialog is composed of;

Three Tabs; one for each different grid projection (Latitude/Longitude, Lambert Conic Conformal & Polar Stereographic)

Information Readouts at the top for Center Latitude, Center Longitude, Latitude Distance and Tangent Cone

Three Buttons along the bottom; OK, Clear & Cancel

Each Tab has a Graphical Map Window and three drag-bars (Lambert has 4 drag-bars). There is a drag-bar for to go along with each parameter at the top of the page. The Center Latitude spans 180 deg (-90 to +90), the Center Longitude spans 360 deg (-180 to +180) and the Latitude Distance spans 180 deg (0-180). The Graphical Map Window will display the map projection reflecting the drag-bar status in real-time.
Below, the screen captures of the WINGRIDD Custom Map Selection showing each map tab:

Latitude/Longitude
*****NOTICE***** A unique function in the Lambert Conic Conformal dialog operation is the limit of the grid area from crossing the pole (90 deg Lat). There can be potential of adjusting the Center Latitude bar with the Latitude Distance bar where the border of the grid would cross over the pole & this is not allowed. Therefore, there are automatic limits with these adjustments and the bars will not move beyond these limits. If the user wishes a larger area view (larger Latitude Distance), the Center Latitude will not go as far North (or South if Southern Hemisphere). Conversely, if the user wishes a view farther North (or South if Southern Hemisphere), the Latitude Distance cannot have as large a value (must be zoomed in closer).
Polar Stereographic

Any coordinate adjustments made on one tab will be reflected if you switch to another tab. If one wishes to not accept any adjustments to a projection & not use a Custom Grid, press the 'Cancel' button.

If one wishes to clear-out any previous configured Custom Grid & go back to normal WINGRIDDS operations, press the 'Clear' button.
Once the adjustments are finalized, the user can either click [OK] and use the setting operationally in the current session or the user can also save the settings for use latter by clicking the [Save As] button.

Clicking the Save As button allows the user to save the current adjusted map parameters for use latter. This file is stored in the WINGRIDDS/USER directory and requires the ".grd" file extension.

*****NOTICE***** Any Cross/Time Sections you wish to create while a Custom Grid session is in effect, the Cross/Time points *MUST* be within the Custom Grid domain.

*****NOTICE***** If the user wishes to use WAFS data to re-map to a custom projection, they need to insure that all 8 Octets of the WAFS data GRIB files are used regardless of the desired projection to ensure there is proper data coverage for the custom map.
In order for the user to choose a Custom Map File, they should click [Open] and the Load Custom Grid Description dialog is displayed.

The WINGRIDDSS Properties has an added feature in relation to Custom Grid operations. If the user wishes for WINGRIDDSS to Start-up with a Customized Grid and any data files opened to be automatically mapped to that areal projection, first create and save a Custom Grid projection as outlined above, open the WINGRIDDSS Properties and choose the WINGRIDDSS Map Settings tab. At the bottom, you will see an information area which has been added.

The WINGRIDDSS Map Navigation section was created to allow the user to enable Start-up Custom Grid operations. When the WINGRIDDSS Map Settings portion of the Properties is first opened, all of the data windows of the WINGRIDDSS Map Navigation section are grayed-out with the exception of the Custom Map Navigation Enabled at Startup ‘Check-Box’. If a Custom Map has been setup, upon checking the Check-Box, the other data windows will be filled with the info describing the current Custom Map setup. These windows are for display only and only reflect the current Custom Map settings.
In order for the user to choose a Custom Map File, they should click [Load] and the Select Custom Grid Description dialog is displayed.

This window shows the contents of the WINGRIDD/USER directory for the user to select any predefined and saved Custom Grid Description files. Once a file is selected and the checkbox is enabled, at the next WINGRIDD startup, the custom grid will be used by default for any data file opened.
WINGRIDDS Tutorial

Sample Ingest Session for WAFS GRIB Data

The following steps show you how to convert WAFS data encoded using a GRIdded Binary format (GRIB) to WINGRIDDS format. The instructions assume you are using the sample WAFS data set provided with the program. After you have completed the example, read the documentation in detail to get a better understanding of the software and to answer your questions.

Start a session.

1. From the desktop, double-click the icon WINGRIDDS
2. Click: File>Convert WAFS GRIB Data
 Selects File choice #2 (Convert WAFS GRIB Data). Displays the ‘WAFS Area Selection’ dialog and begins your ingest session.

Select area for gridded data set.

1. Use the [Down arrow] key or [click-hold] the mouse on the vertical scroll bar on the right of the window and drag up or down to scroll to position the highlight to an area you want to select.
 Data that fall within the boundaries of the selected area are converted from GRIB to PCG format.

Convert WAFS GRIB data to WINGRIDDS PCG format.

1. Click: Ingest or press Enter
 Converts GRIB data for the selected model run to WINGRIDDS PCG format using the utility GRIB2PCG32 and places the data in the WINGRIDDS\GRIDDATA directory. This may require a significant amount of time if you are processing a large quantity of data. A window will show the progress of the GRIB2PCG32 utility. The window will close when the conversion process is completed. If any errors are encountered during the conversion process, the GRIB2PCG32.LOG file can be viewed for details. The data are now ready to be used in a WINGRIDDS session (refer to ‘Sample WINGRIDDS Applications Session’).

Ingesting WAFS GRIB Data

You can receive gridded data from a variety of sources (e.g., satellite, phone lines). These data files are encoded using a GRIdded Binary communications format (GRIB). Before the data can be displayed and processed by WINGRIDDS, it must be converted to WINGRIDDS rapid-access PCG format. This process is referred to as ingesting GRIB data.

-- Types of GRIB data
 Three types of GRIB data are available to the WINGRIDDS user: WAFS (global data) GRIB and NWS or Regular GRIB and MOS GRIB. Because the data are structured differently, the ingest procedures for the three data types are different. The selected ingest procedure which is displayed in the ‘File’ menu must match the data type that is ingested.
WAFS
Data for global grids (WAFS data) are subdivided into octets (I,J,K,L,M,N,O,P). This data must be preprocessed to create an inventory of data and list of model runs available for conversion from GRIB to WINGRIDDS PCG format. Only one model run may be converted to WINGRIDDS format in a single ingest session.

NWS/Regular and MOS
Data for the entire grid are stored together as a single group in NWS GRIB data files. No preprocessing of NWS GRIB data is necessary before the data are converted to WINGRIDDS PCG format. Multiple model runs may be converted from GRIB to WINGRIDDS PCG format in a single ingest session.

-- Delete GRIB Data
GRIB data from the previous forecast cycle should be deleted before you acquire GRIB data for a new forecast cycle. This will avoid mixing data from different model forecasts and speed up the conversion to WINGRIDDS PCG format because the programs that perform these conversions may process files for ALL the forecast model dates that are present.

To delete GRIB data, Click: File> Delete WAFS GRIB Files
Selects choice #4 (Delete WAFS GRIB Files) from the ‘File’ menu.

You are asked to verify that you want to delete all the files in every GRIB/WAFS/* directory. Press [Y] to begin deleting files. Press [N] to stop the deletion process.

-- Converting WAFS Data from GRIB to WINGRIDDS PCG format
An important step must be taken to describe the area included in the WINGRIDDS data set before you begin the conversion. This is done when you Click: File>Convert WAFS GRIB Data. The ‘WAFS Area Selection’ dialog is displayed for the user to select the geographical area which they desire to be included in the ingest process.

A summary of the conversion process and any errors is contained in the file GRIB2PCG32.LOG.

If you initially decide to convert part of your GRIB data to WINGRIDDS format, you may convert additional data at a later time.

As long as the new GRIB data you select covers the same area and was produced from the same model run as the initial data, the ingest program adds new variables to the existing file without reprocessing or overwriting the variables currently in the file.

If you select a new area but the GRIB data are from the same model run, then the ingest program produces a new file with the same name, but modifies the last letter of the extension to match the octants requested. For example, if the initial WINGRIDDS file covering Octant L is MAR150300.AVN-L and you wish to also cover the areas of Octants L & P, those files are named MAR150300.AVN-PL.

If the GRIB data are from a different model run, then a new PCGRIDDS file is produced and named according to the model run. For example, if the last file produced is MAR150300.AVN-L, then the first file from the next model run is named MAR150312.AVN-L.
-- Select Area for Gridded Data Set

The surface of the earth is divided into eight areas (octants) identified by the labels I,J,K,L,M,N,O,P. You must specify the area that is covered by the gridded data set you are creating from the GRIB data. If you do not select a new area, then the area you selected for the last gridded data set is used. Only those GRIB data octants within the selected area are included in the WINGRIDS data set.

The menu displayed on the screen lists the areas available for the conversion process. The required octants are listed for each entry. GRIB data for all octants required by the selected area must be placed in the GRIB/WAFS/OCTANT* directory where the “*” denotes the Octant letter. If any required octants are missing for a field, GRIB data for that field will not be converted to PCF format.

The location of each octant is described below:

<table>
<thead>
<tr>
<th>Octant</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0-90N</td>
<td>30W - 60E</td>
</tr>
<tr>
<td>J</td>
<td>0-90N</td>
<td>60E - 150E</td>
</tr>
<tr>
<td>K</td>
<td>0-90N</td>
<td>150E - 120W</td>
</tr>
<tr>
<td>L</td>
<td>0-90N</td>
<td>120W - 30W</td>
</tr>
<tr>
<td>M</td>
<td>0-90S</td>
<td>30W - 60E</td>
</tr>
<tr>
<td>N</td>
<td>0-90S</td>
<td>60E - 150E</td>
</tr>
<tr>
<td>O</td>
<td>0-90S</td>
<td>150E - 120W</td>
</tr>
<tr>
<td>P</td>
<td>0-90S</td>
<td>120W - 30W</td>
</tr>
</tbody>
</table>
Use the following steps to select an area for the gridded data set:

1. Click: *File>Convert WAFS GRIB Data*
 Selects File choice #2 (Convert WAFS GRIB Data). Displays the ‘WAFS Area Selection’ dialog and shows the available areas for selection. The menu is shown in Fig.17.

2. Select an area.
 To select an entry with the highlight
 Position the highlight to the desired choice and press [Enter] or click [Ingest].

Fig.17

--- Convert GRIB Data to PCG Format
After your GRIB data are stored in the GRIB\WAFS/Octant* directories, you are ready to preprocess the GRIB data to produce an inventory and list of model runs to be included in the gridded data set
and convert your GRIB data to PCG format. The WAFS GRIB preprocessing used to be a separate utility in PCGRIDDS. In WINGRIDDS, that function has been incorporated within the GRIB2PCG32 ingest utility.

Use the following steps to proceed with the conversion process:

1. Within the WAFS Area Selection Menu, press [Enter] or click [Ingest]

 The GRIB2PCG32 GRIB Conversion Utility is started and data are preprocessed and inventoried before they are converted to PCG format. This procedure may require a significant amount of time if you are processing a large quantity of data. When the GRIB2PCG32 utility is started, the WAFS Area Selection Menu disappears and a window opens to show the progress and status of GRIB2PCG32. Other WINGRIDDS tasks and operations may be performed during this process. The Window closes when the conversion process is completed. The data are now ready to be used in a WINGRIDDS session.

After the conversion is complete, the data files in PCG format are placed in the directory, \WINGRIDDS\GRIDDATA, and are available for display by WINGRIDDS (refer to ‘Sample WINGRIDDS Applications Session’).

 Note: If not every octant has the same GRIB parameters, those parameters which are missing are skipped. All GRIB files are left unchanged after the WINGRIDDS file is created.

 A summary of the conversion process and any errors encountered are contained in the file GRIB2PCG32.OUT.

 Note: All GRIB files are left unchanged after the PCG file is created.

Sample Ingest Session for NWS/Regular GRIB Data

The following steps show you how to convert NWS/Regular data encoded using a GRIdded Binary format (GRIB) to WINGRIDDS PCG format. The instructions assume you are using the sample NWS data set provided. After you have completed the example, read the documentation in detail to get a better understanding of the software and to answer your questions.

 Sample data set contents
 The sample NWS data set contains:

 NAM model fields (00 and 12 hour forecast)
Start a session.

1. From the desktop, double-click the icon WINGRIDDS

2. Click: *File>*Convert Non-WAFS GRIB Data>*Convert Regular GRIB Data

 Selects *File* choice #4 (*Convert Non-WAFS GRIB Data*) and Sub-Menu choice #1 (*Convert Regular GRIB Data*) which begins your ingest session. The utility NGRB2PCG32 Converts GRIB data to WINGRIDDS PCG format and places the data in the WINGRIDDS\GRIDDATA directory. This procedure may require a significant amount of time if you are processing a large quantity of data. A window opens to show the progress and any errors during the conversion process. While the conversion process is ongoing, other WINGRIDDS tasks and operations may be performed. This window closes when the conversion process is completed. The data are now ready to be used in a WINGRIDDS session (refer to ‘Sample WINGRIDDS Applications Session’).

Delete existing GRIB data.

Use the following optional steps to delete NWS GRIB data files from previous forecasts, if desired, before you acquire new data:

To delete GRIB data, Click: *File>* Delete Regular GRIB Files

 Selects choice #5 (*Delete Regular GRIB Files*) from the ‘*File*’ menu.

2. Type: Y

 Answers ‘yes’ when asked if you want to delete all the files in the GRIB\NWS directory. Type N if you want to exit this process without deleting files.

Ingesting NWS GRIB Data

You can receive gridded data from a variety of sources (e.g., satellite, phone lines, Internet). These data files are encoded using a GRIdded Binary communications format (GRIB). Before the data can be displayed and processed by WINGRIDDS, it must be converted to WINGRIDDS rapid-access PCG format. This process is referred to as ingesting GRIB data.

--- Types of GRIB data

Three types of GRIB data are available to the WINGRIDDS user: WAFS (global data) GRIB and NWS or Regular GRIB and MOS GRIB. Because the data are structured differently, the ingest procedures for the three data types are different. The selected ingest procedure which is displayed in the ‘*File*’ menu must match the data type that is ingested

WAFS

Data for global grids (WAFS data) are subdivided into octets (I,J,K,L,M,N,O,P). This data must be preprocessed to create an inventory of data and list of model runs available for conversion from GRIB to WINGRIDDS PCG format. Only one model run may be converted to WINGRIDDS format in a single ingest session.
NWS/Regular and MOS
Data for the entire grid are stored together as a single group in NWS GRIB data files. No preprocessing of NWS GRIB data is necessary before the data are converted to WINGRIDDSS PCG format. Multiple model runs may be converted from GRIB to WINGRIDDSS PCG format in a single ingest session.

-- Selecting the method used to process GRIB data

The procedure used to convert GRIB data to PCG format differs for NWS and WAFFS data. The selected procedure MUST match the type of GRIB data that you process. When ingesting and converting non-WAFFS GRIB files to PCG files, the user must use the Convert Non-WAFFS GRIB Data menu selections and vice-versa for WAFFS.

A) As long as the new GRIB data you select covers the same area and was produced from the same model run as the initial data, the ingest program adds new variables to the existing file without reprocessing or overwriting the variables currently in the file.

B) If you select a new area but the GRIB data are from the same model run, then the ingest program produces a new file with the same name, but modifies the first character of the year field. For example, if the initial PCG file is JL030300.ETA211, the next files are named JL030300A.ETA211, JL030300B.ETA211 (up to a total of 10 files).

C) If the GRIB data are from a different model run, then a new PCGRIDDS file is produced and named according to the model run. For example, if the last file produced is JL030300.ETA211, then the first file from the next model run is named JL030312.ETA211.

-- Convert GRIB Data to PCG Format

After your GRIB data are stored in the GRIB\NWS directory, you are ready to convert your GRIB data to PCG format. Begin the conversion process by Clicking: File>Convert Non-WAFFS GRIB Data>Convert Regular GRIB Data from the WINGRIDDSS menu. This will start the NGRIB2PCG32.EXE GRIB Conversion utility. After the conversion is complete, the data files in PCG format are placed in the directory, WINGRIDDSS\GRIDDATA, and are available for display by WINGRIDDSS.

A summary of the conversion process and any errors encountered are contained in the file NGRIB2PCG32.OUT.

Note: All GRIB files are left unchanged after the PCG file is created.
Sample Ingest Session for Observation Data

The following steps show you how to convert Surface and/or Upper-Air data to WINGRIDDS PCG format. The instructions assume you are using the sample Observation data set provided. After you have completed the example, read the documentation in detail to get a better understanding of the software and to answer your questions.

Sample data set contents
The sample Observation data set contains:

- 00Z Surface and Upper-Air RAOB messages

Start a session.

1. From the desktop, double-click the icon **WINGRIDDS**
2. Click: **File>Convert Observation Files**

 Selects *File* choice #5 (Convert Observation Files) which begins your ingest session. The Convert Observation Data dialog will be shown. Once the selections have been made, selecting ‘OK’ will start the utility **OBS2PCG32** which converts Observation data to WINGRIDDS PCG format and places the data in the **WINGRIDDS\GRIDDATA** directory and creates a text-based corresponding combined observation data file in the **WINGRIDDS\GRIDDATA\OBS** directory. This procedure may require a significant amount of time if you are processing a large quantity of data. A window opens to show the progress and any errors during the conversion process. While the conversion process is ongoing, other WINGRIDDS tasks and operations may be performed. This window closes when the conversion process is completed. The data are now ready to be used in a WINGRIDDS session (refer to ‘Sample WINGRIDDS Applications Session’).

Delete existing OBS data.
Use the following optional steps to delete observation data files from previous ingests, if desired, before you acquire new data:

To delete Observation data, Click:
 File> Delete Observation Files
 Selects choice #9 (Delete Observation Files) from the ‘File’ menu.
2. **Click:** Y
 Answers ‘yes’ when asked to acknowledge the successful deletion of the Observation data. If any deletions failed, they will create their own error dialog.

Ingesting Observation Data

You can receive Surface and/or Upper-Air observation data from a variety of sources (e.g., satellite, phone lines, Internet). These data files are text-based WMO formatted files. Before the data can be displayed and processed by WINGRIDDS, it must be scanned, filtered, a Barnes Analysis performed and then converted to WINGRIDDS rapid-access PCG format. This process is referred to as ingesting Observation data.
-- Types of Observation data
Two main categories of observation data are available to the WINGRIDDs user: Surface and Upper-Air (RAOB) observations. The Surface category can be subdivided into 4 categories: Buoy data, METAR or SAO data, Ship data and Synoptic data. Because the data are structured differently, the ingest procedures for the three data types are different. The selected ingest procedure which is displayed in the 'File' menu must match the data type that is ingested.

-- Convert Observation Data to PCG Format
After your Observation data are stored in the OBS directories, you are ready to convert your Observation data to PCG format. Before you begin, you must ensure the Date-Time selections match the data which was downloaded. You must also select the grid area to perform the Barnes Analysis on during the conversion. Once these selections have been made, you begin the conversion process by clicking the 'OK' button. This will start the OBS2PCG.EXE Observation Conversion utility. After the conversion is complete, the data file in PCG format is placed in the directory, \WINGRIDDs\GRIDDATA, and are available for display by WINGRIDDs. There will also be a corresponding combined observation text file stored in the \WINGRIDDs\GRIDDATA\OBS directory.

A summary of the conversion process and any errors encountered are contained in the file OBS2PCG.OUT.

Note: All Observation files are left unchanged after the PCG file is created.

For full details and full coverage of all Observation Ingest options, please refer to the WINGRIDDs Observation Data Options section.
Sample WINGRIDDS Applications Session

The following steps show you how to display a simple product using WINGRIDDS. After you have completed the example, read the documentation in detail to get a better understanding of the software and to answer your questions.

Start a session.

1. From the desktop, double-click the icon WINGRIDDS
 Begins your WINGRIDDS session.

Select forecast data file.

1. Click: File>Open New Forecast File or click: Open New Forecast File Button on Toolbar.
 A list of the available forecast data files is displayed on the screen. The first action you must take is to select a forecast data file.

2. Either Single-click a single file and click Open or you can double-click a single file and that file will open.
 Selects forecast data file and displays a map of the areal coverage.

Display a GRIB Parameter.

1. Click in the Command Line.

2. Enter: HGHT
 This should show a contour of the 850 mb Heights

3. Enter: WIND
 This should erase the Heights contour and display the WIND at 850 mb

4. Enter: HGHT&WIND
 This should show both the Heights & WIND at 850 mb

NOTE: All command requests are processed from right to left (a la Reverse Polish Notation). As such, the command HGHT&WIND will produce a Wind field first, a Height field in a second color.

Define forecast hour.

1. Click: Specs
 Selects the ‘Specs’ dropdown menu. The highlight is positioned at the entry ‘Forecast hour’ in the ‘Specs’ menu.

2. Select the Forecast Hour menu
 The window used to define time parameters is displayed on the screen. A list of available forecast hours is displayed in the right side of the window.

3. Position the cursor to the field for forecast hour.
4. **Type: 012**
 This clears the field by overwriting the old value. Enters a new value in the field.

5. **Click: [OK]**
 Sets the forecast hour used for the data displays to 12 hours and saves the value. Erases the form.

Define a display mode.

1. **Click: Display menu**
 Selects the ‘Display’ entry. The checkmark is positioned at the entry ‘Plan View’ in the ‘Display’ menu to show the display is in Plan View Mode.

2. **Click: Plan View**
 Selects the option to define a display mode. The window used to define the plan view mode is displayed on the screen.

3. **Click: Lookup Button**
 A list of predefined plan view definitions is displayed in a separate window.

4. Click-drag the scroll bar on the right side of the window to pan up/down to view the selection then click the area of your choice or use the [down arrow] key to move the highlight to the area of your choice.

5. **Click: OK**
 Erases the list of definitions. The definition values are entered into the form.

6. **Click: OK**
 Sets the plan view definition. A map showing the area you defined is displayed.

Display a product.

1. **Click: Products menu**
 Selects the ‘Products’ entry.

2. Drag your mouse across the Products Menu and the entries will highlight as you move your mouse.

3. Go down and click on the ‘Build Your Own Maps’ entry (10th entry down)

4. The ‘Command window’ will be displayed with the Command macros listed for that entry.

5. **Single-Click:: Hght then click OK or Double-click Hght**
 Selects the product and displays it on the screen. You should now see the 850 mb heights displayed on your screen.
Switch Between 1 Panel mode and 4 Panel mode.

1. If the display is in 1 Panel mode, to switch to 4 Panel mode either
 a) Click: Button on the WINGRIDDS Tool Bar or
 b) Enter the command 4PNL on the Command Line

 This will change the display mode from 1 Panel to 4 Panel mode.

If the display is in 4 Panel mode, to switch to 1 Panel mode either
 a) Click: Button on the WINGRIDDS Tool Bar or
 b) Enter the command 1PNL on the Command Line

 This will change the display mode from 4 Panel to 1 Panel mode.

Once this is complete, you need to re-calculate the area displays.

2. Click: Display menu
 Selects the ‘Display’ entry. The checkmark is positioned at the entry ‘Plan View’ in the ‘Display’ menu to show the display is in Plan View Mode.

3. Click: Plan View
 Selects the option to define a display mode. The window used to define the plan view mode is displayed on the screen.

4. Click: OK
 Sets the plan view definition. A map showing the area you defined is displayed.

If CROSS or TIME section have previously been defined, they must be re-calculated as well. For the Cross Section:

5. Click: Display menu
 Selects the ‘Display’ entry.

6. Click: Cross View
 Selects the option to define a display mode. The window used to define the plan view mode is displayed on the screen.

7. Click: OK
 Recalculates the cross view definition. A map showing the area you defined is displayed.

For the Time Section:

8. Click: Display menu
 Selects the ‘Display’ entry.

9. Click: Time View
 Selects the option to define a display mode. The window used to define the plan view mode is displayed on the screen.

10. Click: OK
 Recalculates the time view definition. A map showing the area you defined is displayed.
Exit WINGRIDDS

1. Click: **File> Exit** menu
 Exits the WINGRIDDS program.

 or

2. Type: **X** at the Command Line
 Exits the WINGRIDDS program.

For more information or detailed instruction about WINGRIDDS operations, see the WINGRIDDS Operations section. For information about changing the configuration of WINGRIDDS, see the Customizing the WINGRIDDS System section.
WINGRIDDs Operations

The following discussions describe the operation of WINGRIDDs.

-- Starting WINGRIDDs
Use the following steps to initiate a WINGRIDDs session:

1. From the desktop, double-click the icon **WINGRIDDs**
 or
2. From the ‘Start> Programs> WINGRIDDs’ menu, click **WINGRIDDs**

When you enter WINGRIDDs you may download data or ingest data but you can not perform any work on the data until a forecast file is opened.

-- Main Screen
The main screen for WINGRIDDs is displayed horizontally on line 2 (top) of the screen (Fig.2).

Fig.2

All Buttons except the **Open File** button are disabled and grayed out until a file is opened.
-- Grid Information

The grid information is displayed on the status line at the bottom of the screen. This line shows the current settings that are used for data selection. When you begin WINGRIDDS, these values are set to the default values found in `\WINGRIDDS\USER\INITGRID.SPC` (refer to *Customizing WINGRIDDS*).

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>Pressure level, Isentropic level, Potential Vorticity level, Sigma level or Height level</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAYER</td>
<td>A grid layer consisting of 2 levels; used for level differences, etc.</td>
</tr>
<tr>
<td>FHR</td>
<td>Forecast hour</td>
</tr>
<tr>
<td>FHRS</td>
<td>Pair of forecast hours (Time range) used for time differences, etc.</td>
</tr>
<tr>
<td>MODEL</td>
<td>A 4 character forecast model identification name the forecast model date</td>
</tr>
<tr>
<td>m/#</td>
<td>Current display mode (m) and grid data-thinning factor (#). The character 'm' can have one of three values: P (Plan view), T (Time-section), X (Cross-section). The character # can have a power of two value: 1, 2, 4, 8, A(16), B(32), etc.</td>
</tr>
<tr>
<td>Other</td>
<td>Once a forecast file is loaded, the date-time-group of the model run as well as the file name will be displayed.</td>
</tr>
</tbody>
</table>
When you select ‘File’ from the main menu, a ‘pull-down’ menu (Fig.3) with the following choices is displayed.

1. **Download GRIB Files**
 This is where GRIB data files are downloaded through WINGRIDDSS (refer to ‘Downloading GRIB Data’).

2. **Download Observation Files**
 This is where Observation data files are downloaded through WINGRIDDSS (refer to ‘Downloading Observation Data’).

3. **Download Frontal Position Files**
 This is where ASUS Frontal Position data files are downloaded through WINGRIDDSS (refer to ‘Downloading ASUS Frontal Data’).

4. **Convert WAFS GRIB Data**
 This is where WAFS GRIB files are ingested and converted to PCG-format forecast files (refer to ‘Ingest WAFS GRIB Data’).
5. Convert Non-WAFS GRIB Data
This is where all other GRIB files are ingested and converted to PCG-format forecast files (refer to ‘Ingest GRIB Data’).

6. Convert Observation Data
This is where all Observation files are scanned and processed, Barnes Analysis applied and the data converted to PCG-format forecast files (refer to ‘Convert Observation Data’).

7. Delete WAFS GRIB Files
All WAFS GRIB files are deleted from the GRIB/WAFS/Octant* directories after they have been converted to PCG Format.

8. Delete Regular GRIB Files
All Regular GRIB files are deleted from the GRIB/NWS directory after they have been converted to PCG Format.

9. Delete MOS GRIB Files
All MOS GRIB files are deleted from the GRIB/MOS directory after they have been converted to PCG Format.

10. Delete Observation Files
All Surface and Upper-Air Observation data files are deleted from the OBS directory after they have been converted to PCG Format.

11. Delete Frontal Position Files
All ASUS Frontal Position data files are deleted from the FRONT directory.

12. Delete Processed Data File
Delete a selected Processed Data file from the configured GRIDDATA directory.

13. Properties
Opens WINGRIDDS Properties Dialog to configure WINGRIDDS operations (refer to ‘Customizing the WINGRIDDS System’).
14. Open New Processed Data File

This selects a new forecast data file from the list of files in the current gridded data directory. When you select this option, a list of available forecast data files is displayed on the screen. Both GEMPAK and PCG data files will be stored here.

To select a new forecast data file:

1. Double-click on the filename you wish to open, or…
 By default the files are listed in alphabetical order by name.

2. Single-click on the filename you wish to open and click “Open”

The current gridded data directory is specified in the file \WINGRIDD\USER\WINGMODE.DAT (refer to ‘Customizing WINGRIDD’). The default value for this directory is \WINGRIDD\GRIDDATA.
Selecting a new forecast data file must be the first action you perform in WINGRIDDS before any WINGRIDDS commands can be accepted. No other actions (except Downloading or ingesting GRIB files or exiting) are allowed until you select a file. You can select only one file at a time. Each file you select is added to the list of up to 35 files available for access by WINGRIDDS. However, you can use only one file at a time. The last file you select will be the active forecast data file unless you change it with choice #5 (Change forecast file).

14. Change Processed Data file
Changes the active forecast data file to one of the files displayed in the list of previously selected forecast files (Fig.4). Files are added to this list each time you select a new forecast file (choice #4). Only one file may be active at a time. Data for products are obtained from the active file. When you select this option, a list of previously selected forecast data files is displayed on the screen. To change the active forecast data file:

1. Double-click on the filename you wish to open, or…
 The currently active processed data file is highlighted.

2. Single-click on the filename you wish to open and click “Open”
 Makes the file active.

(FIG 4)
15. List Processed Data file contents

Lists the gridded data available in the active forecast data file at the currently selected forecast hour shown at the bottom of the screen (Fig.5).

The information displayed at the beginning of the listing includes: the filename (FEB160800.NAM211), the forecast model name (MODEL=NAM8), the model date (FROM 2008/02/16/00), the currently selected forecast hour (FHR=0), the level (LEVEL=850), the layer (LAYER=1000/500), and the time range (FHRS=00/24).

Data fields are identified by a 4 character description a 4 character level. For example, TEMP 250 corresponds to the TEMPerature grid at 250 hPa and PRESTROP corresponds to the PRESSure grid at the TROPopause.

Fig.5
-- Specs Menu

The 'Specs' option controls the setting of time and level specifications.

Note: The time parameters should be set before the level parameters so that all of the levels available for the currently selected forecast hour are displayed when you select the vertical levels.

When you select 'Specs' from the main menu, a 'pull-down' menu (Fig.6) with the choices, 'Forecast hour' and 'Vertical level', is displayed.
Forecast hour

When you choose this option, the current forecast hour and time range are displayed in a form (Fig.6) along with a list of the forecast times available in the currently active gridded data set.

You can modify the forecast time parameters by entering the integer times or selecting values from the list of available forecast hours.

To enter a value

1. Position the cursor to the desired field (Forecast hour, Time range start or end).
2. Type the number.

The values in the ‘Available Times’ are not selectable. They are only there for reference.
After you have completed all of your revisions click [OK] to save the values you have set or click [Cancel] to cancel the operation.

Vertical level
With this option, the current level and layer values are displayed in a form (Fig.7) along with the list of levels which are available at the currently specified forecast time for the active gridded data set.

![Fig.7](image)

You can modify these parameters by entering values by referencing them from the list of levels displayed in the ‘Available Levels’ window. Since levels are listed only for the current forecast hour and may vary from one forecast time to another, you should select the time values (choice #1) before you select the levels.

-- Non-Pressure Levels
If the user wishes to enter Isentropic, Potential Vorticity, Sigma or Height levels, those values are entered here as well. Isentropic range from I220-I500 degrees Kelvin. Sigma levels are preceded with the letter ‘S’. Height ranges can be in Meters or Feet and must be in hundreds and preceded with the letter ‘H’. For example, ‘H100’ would define the 10,000 ft/mtr level. The Feet/Meters selection is specified in the file `\WINGRIDDSD\USER\WINGMODE.DAT` (refer to ‘Customizing WINGRIDDs’).
To enter a value

1. Click the cursor in the desired field (LEVEL, LAYER: Bottom Level, Top Level).

2. Type the number. Ensure values are LEFT justified.

 The values in the ‘Available Levels’ are not selectable. They are only there for reference.

After you have completed all of your revisions click [OK] to save the values you have set or click [Cancel] to cancel the operation.
-- Display Menu

The 'Display' option controls the setting and definition of the display mode. When you select 'Display' from the main menu, a 'pull-down' menu (Fig.8) appears on the screen with the following choices.

Plan view
Data are displayed over a horizontal area determined by a central latitude and longitude and a north/south distance in degrees.

Cross-section
Data are displayed at multiple pressure levels along a vertical cross-section path which is defined between a left latitude and longitude point and a right latitude and longitude point.

Time-section
The vertical structure of data is displayed for a specified time period and multiple pressure levels at a particular point which is defined by a latitude and longitude.

Fig.8
Change the active display mode
The active display mode is identified with a check-mark next to the appropriate menu choice and the appropriate button on the Tool Bar is darkened. To change the active display mode, either click the file selection under the ‘Display’ menu or click the enabled Display Select button on the Tool Bar.

Note: A display mode must be defined before you can make it active.
Define the Plane View Mode

After clicking on the desired mode, the current latitude and longitude parameters that define the selected display mode are displayed in a form (Fig.9). You can use one of four methods to modify these parameters.

To enter a value (Fig.9)

1. Click in the desired field with the mouse to highlight the value.

2. Type the value of the desired latitude or longitude in degrees.
 Degrees may be expressed as a positive integer value or as a positive real value.

 OR

 Click on the up-down arrows to increment or decrement the value in the window.

3. When direction is required, type one of the following characters to indicate the appropriate hemisphere: N, S, W, E.

4. Press [OK].
 Saves the values you set.

Fig.9
To select an entry from the lookup table (Fig.10)

1. Click [Lookup].
 Activates the lookup menu. A list of display mode definitions is shown on the screen.

2. Double-click to select the entry immediately or single-click the entry.
 Remember the table may contain multiple pages.

3. Click [OK].
 Saves the values you set.

To add entries into the Lookup Table refer to ‘Customizing WINGRIDDS’.
To select an entry from the station id list (Fig.11)

1. Click [Station ID].
 Activates selection by station identifier (id). A request for one or more station id's appears on the screen.

2. Type a 3 or 4 character station id in the field.

3. Click [OK].
 Retrieves the parameters for the station id and enters them into the form.

4. **When** you are using the station id list to define a **plan view**, you must type in the N-S display distance manually if you want it changed from the current setting.

5. Click [OK].
 Saves the values you set.

Fig.11
To select an entry from the Map Select (Fig.12)

1. Click [Map Select].
 Activates the Map Plan Section Select Window. A list of display mode options are shown on the screen.

 As the mouse is moved within the Map Select window, the ‘Center Latitude’ and ‘Center Longitude’ numbers will dynamically change to show the location of the mouse pointer. The ‘Zoom’ and ‘Pan’ buttons allow the user to change the geographic area shown in the window for more accurate area selection.

2. To create a Plan Area selection, click and hold the left mouse button. When you start to move the mouse, a rectangle will be drawn showing the Plan Area selection. Also, the ‘Center Latitude’ and ‘Center Longitude’ numbers will start showing the geographic center of the rectangle and the ‘North/South Distance’ number will start to update the vertical distance of the rectangle (in degrees) as the mouse position is changed. When the mouse is moved to show the geographic area the user wants in the Plan Area, release the left mouse button and the Plan Area will be stored.
3. Click [OK] to save the Plan Area selection. The Selection Window will close.

OR

4. Click [CLEAR] to undo the Plan Area selection and start again.

OR

5. Click [Cancel] to close the Plan Area selection and clear any selection

For all three display modes, remember that you must click [OK] to save the values you have set. WINGRIDS will define the new display mode and make it active. After this process is completed, a map is displayed on the screen showing the current plan view definition. The position of the cross-section line and the time-section point are indicated on the map if they are defined and lie within the map area.
To select a Custom Grid Projection (Figs.13,14,15)
The user can enable a Custom Grid projection by either creating one from scratch or opening a previously saved projection. The following are instructions to create from scratch:

1. Click [Custom Grid].
 Activates the Custom Grid dialog. A display of different grid projections is shown on the screen.

2. Select one of the three tabs (Latitude/Longitude, Lambert Conic Conformal or Polar Stereographic) for the desired grid projection. (see figs below)

Fig.13

Custom Map – Latitude/Longitude Selection
Custom Map – Lambert Conic Conformal Selection
Custom Map – Polar Stereographic Selection

3. Once a base projection is selected, the user is free to use the drag pointers to adjust the field of view to suit the users’ requirements.

4. Once the desired field of view is achieved, click [Next].
(a Lambert Conic Conformal projection will be used as the example)
Fig. 16 shows the base map with the interpolated latitude/longitude gridded data overlaid in red. It is seen that the base map latitude/longitude lines in white do not match the interpolated latitude/longitude gridded data in red. At this point, the user must use the adjustments above the window to make the data in red overlay and match the background as close as possible.

NOTE – it may not be possible to get an exact match. The goal is to get it as close as possible. It takes practice to get familiar with how the adjustments affect the display.
Fig. 17 shows the base map with the interpolated latitude/longitude gridded data overlaid in red after user adjustments have been applied.

At this point, the user may either click [OK] to use the custom map settings operationally or, to save the custom map settings for rapid recall at a later time, click the [Save As] button to save the settings. (see fig. 18 below).
Fig. 18 shows the Save Custom Grid Description dialog where the user selects a file name to save the Custom Map configuration settings. The files are saved in the WINGRIDDSS/USER directory and require the "grd" file extension.
To select a Saved Custom Grid Projection (Figs. 19)

![Figure 19](image)

To open and use a previously saved Custom Grid Projection, within the Custom Map Selection dialog, click [Open] (see fig 20).
When the user selects to use a saved Custom Grid Description, the Load Custom Grid Description dialog is displayed showing any saved grid description files that are in the WINGRIDDs/USER directory. Select the preferred file and click [Open]. WINGRIDDs will accept the predefined navigation information in the file and will not require the user to do any adjustments to the display.
Define the Cross Section Mode
After clicking on the desired mode, the current latitude and longitude parameters that define the selected display mode are displayed in a form (Fig.21). You can use one of four methods to modify these parameters.

To enter a value (Fig.21)

1. Click in the desired field with the mouse to highlight the value.

2. Type the value of the desired latitude or longitude in degrees.
 Degrees may be expressed as a positive integer value or as a positive real value.

 OR

 Click on the up-down arrows to increment or decrement the value in the window.

3. When direction is required, type one of the following characters to indicate the appropriate hemisphere: N, S, W, E.

The following entries are optional

Accept default entries or-

4. Enter 'U' to display the Preset pressure levels listed the INITGRID.SPC file or enter 'A' to display all pressure levels in the current data file or enter 'I' to calculate data on Isentropic levels or enter 'H' to calculate data on height levels in feet or meters or enter 'X' to use a user defined file which is entered next.

5. Enter the 4-letter file name which contains the user defined pressure levels.

6. Click [OK].
 Saves the values you set.
Fig. 21

INPUT 4 CHARACTER COMMANDS AND DELIMITERS OR EXIT

Cross Section Setup

Define the latitude and longitude for the cross section

Left: Latitude 39.55° N Longitude 124.84° W
Right: Latitude 36.38° N Longitude 72.40° W

Enter [U] Present Pressure Levels
Enter [A] All Model Pressure Levels
Enter [I] Isentropic Levels
Enter [H] Height Levels
Enter [D] User Defined Levels (CMD: XLYL)

Enter 4 Letter File Name for User Defined Levels (****.LVL)

OK Lookup Station ID Map Select Cancel
To select an entry from the Lookup table (Fig.22)

1. **Click [Lookup].**
 Activates the lookup menu. A list of display mode definitions is shown on the screen.

2. **Double-click to select the entry immediately or single-click the entry.**
 Remember the table may contain multiple pages.

3. **Click [OK].**
 Saves the values you set.

![Fig.22](image-url)
To add entries into the Lookup Table refer to ‘Customizing WINGRIDDS’.

To select an entry from the Station ID list (Fig.23)

1. Click [Station ID].
 Activates selection by station identifier (id). A request for one or more station id's appears on the screen.

2. Type a 3 or 4 character station id in the field.
 If there is a second field, position the cursor to the next field using the [Tab] key and type a second station id.

3. Click [OK].
 Retrieves the parameters for the station id and enters them into the form.

4. Click [OK].
 Saves the values you set.

Fig.23
To select an entry from the Map Select (Fig.24)

1. Click [Map Select].
 Activates the Map Cross Section Select Window. A list of display mode options are shown on the screen.

![Fig.24](image)

As the mouse is moved within the Map Select window, the ‘Start Latitude/Longitude’ numbers will dynamically change to show the location of the mouse pointer. The ‘Zoom’ and ‘Pan’ buttons allow the user to change the geographic area shown in the window for more accurate area selection.

2. To create a Cross-Section selection, click and hold the left mouse button. When you start to move the mouse, a line will be drawn showing the Cross-Section selection. Also, the ‘Start Latitude/Longitude’ numbers will be frozen at the first click-point. Now, the ‘End Latitude/Longitude’ numbers will start to update the mouse position. When the mouse is moved to the geographic area the user wants the Cross-Section to end, release the left mouse button and the Cross-Section line will be stored.
3. Click [OK] to save the Cross-Section selection. The Selection Window will close.

 OR

4. Click [CLEAR] to undo the Cross-Section selection and start again.

 OR

5. Click [Cancel] to close the Cross-Section selection and clear any selection.

Note: You can define cross-section lines and time-section points that fall outside the plan view display area but within the area covered by the currently active gridded data set. However, they are not displayed on the plan view map.

If both ends of the cross-section line or the time-section point fall outside the area covered by the currently active gridded data set, then the definition points for that display mode are canceled and you are returned to the plan view display mode.
Define the Time Section Mode
After clicking on the desired mode, the current latitude and longitude parameters that define the selected display mode are displayed in a form (Fig.25). You can use one of four methods to modify these parameters.

To enter a value (Fig.25)

1. Click in the desired field with the mouse to highlight the value.

2. Type the value of the desired latitude or longitude in degrees. Degrees may be expressed as a positive integer value or as a positive real value.

 OR

 Click on the up-down arrows to increment or decrement the value in the window.

3. When direction is required, type one of the following characters to indicate the appropriate hemisphere: N, S, W, E.

The following entries are optional

Accept default entries or-

4. Enter 'U' to display the Preset pressure levels listed the INITGRID.SPC file or enter 'A' to display all pressure levels in the current data file or enter 'I' to calculate data on Isentropic levels or enter 'H' to calculate data on height levels in feet or meters or enter 'X' to use a user defined file which is entered next.

5. Enter the 4-letter file name which contains the user defined pressure levels.

6. Enter 'U' to display the Preset forecast hours listed the INITGRID.SPC file or enter 'A' to display all forecast hours in the current data file or enter 'X' to use a user defined file which is entered next.

7. Enter the 4-letter file name which contains the user defined forecast hours.

8. Click [OK]. Saves the values you set.
Fig. 25
To select an entry from the lookup table (Fig.26)

1. Click [Lookup].
 Activates the lookup menu. A list of display mode definitions is shown on the screen.

2. Double-click to select the entry immediately or single-click the entry.
 Remember the table may contain multiple pages.

3. Click [OK].
 Saves the values you set.

4. Click [OK].
 Saves the values you set.

Fig.26
To add entries into the Lookup Table refer to ‘Customizing WINGRIDDS’.

To select an entry from the station id list (Fig.27)

1. Click [Station ID].
 Activates selection by station identifier (ID). A request for one or more station id’s appears on the screen.

2. Type a 3 or 4 character station id in the field.

3. Click [OK].
 Retrieves the parameters for the station id and enters them into the form.

4. Click [OK].
 Saves the values you set.
To select an entry from the Map Select (Fig.28)

1. Click [Map Select].
 Activates the Map Time Section Select Window. A list of display mode options are shown on the screen.

 Fig.28

As the mouse is moved within the Map Select window, the ‘Grid-Point Latitude’ and ‘Grid-Point Longitude’ numbers will dynamically change to show the location of the mouse pointer. The ‘Zoom’ and ‘Pan’ buttons allow the user to change the geographic area shown in the window for more accurate area selection.

2. To create a Time-Section selection, move the mouse around to the geographic area you wish the point to be. A single left mouse button click will store the location and the ‘Grid-Point Latitude’ and ‘Grid-Point Longitude’ numbers will no longer update when the mouse is moved.

3. Click [OK] to save the Time-Section selection. The Selection Window will close.

OR

4. Click [CLEAR] to undo the Time -Section selection and start again.
OR

5. Click [Cancel] to close the Time -Section selection and clear any selection.

Note: You can define cross-section lines and time-section points that fall outside the plan view display area but within the area covered by the currently active gridded data set. However, they are not displayed on the plan view map.

If both ends of the cross-section line or the time-section point fall outside the area covered by the currently active gridded data set, then the definition points for that display mode are canceled and you are returned to the plan view display mode.

Sounding/Hodograph/BUFKIT/Trajectory Point Setup

The WINGRIDDs ‘Display’ menu has an entry added at the bottom. There is a common dialog which is used to select a Sounding, Hodograph, Bufkit generation or Trajectory display. These are grouped together because they all show data from a single grid point or location. WINGRIDDs *must* be in ‘Plan’ view to create any of these displays.
The following dialog is displayed whenever the ‘Sounding/Hodograph/Bufkit/Trajectory’ menu selection is chosen.

Within this dialog, the user can choose one type of display operation at a time. Each type of display (Sounding [Skew-T, Telphigram & Stuve], Hodograph, Bufkit & Trajectory) can store its own separate location information and the last location used will be saved. As the Latitude or Longitude is changed, the Grid X/Y location is updated to reflect the new location and vice-versa. The ‘Lookup’ and ‘Station ID’ buttons work the same as on the ‘Time Section Select’ dialog. The new button (also on the ‘Plan’, ‘Cross’ & ‘Time’ dialogs but covered in their own section) is the ‘Map Select’ button. See below:
The ‘Map Data Point Select’ window opens and allows the user to graphically select the grid-point location for the operation requested. This works as follows; when the window opens, the full grid area is shown. As the user moves the mouse curser across the screen, the grid-point latitude and longitude dynamically update to show the real-time position of the curser. The user can pan around or zoom in or out using the buttons across the top. The selection of a point for use is made with the *single* left-click of the mouse. At that point, the grid-point locations are frozen at that location. If the user does not want that location and wishes to choose another, click the ‘Clear’ button and start again. If the user wishes to just cancel from the Map Select operation all together and reject any selection, click the ‘Cancel’ button. However, if the user has selected a valid location, click the ‘OK’ button. The window will close and the location information will be transferred to the Setup dialog.

Once the location and display type is selected in the Setup dialog, clicking the ‘OK’ button will cause the requested display or operation to be executed.
If a Trajectory display has been selected, the ‘Trajectory Direction’ selection area will be enabled as seen below:

Since trajectories can be computed in either forward direction (where the wind parcel is moving to) or backward direction (where the wind parcel is moving from), the selection should be made by the user. The default selection is a ‘Forward Trajectory’.

Sounding Displays

WINGRIDDS can produce 3 different types of sounding displays and they apply for either model data or observation data. The 3 displays are Skew-T, Telphigrams and Stuve displays. If model data is displayed, data from all levels (except boundary and sigma levels) will be displayed. If data is requested from an observation data file, 2 situations exists; if the data request is from a RAOB reporting station, the full RAOB report will be displayed. However, if the data request is from an area between reporting stations, only the interpolated gridded data will be displayed.

WINGRIDDS Commands

The Sounding displays can either be created using the menu dialog (above) or from the WINGRIDDS command line. Command-line location can be requested from either a Lat/Lon location, Grid-point X/Y location or Station ID. The commands for Skew-T plots are as follows:

- `SKEW LAT25.82N LON80.28W` > Lat/Lon location
- `SKEW X71 Y13` > Grid X/Y location
- `SKEW STIDK Mia` > Station ID selection
NOTICE – there is a space between command parameters *however* there are no spaces in the command parameters. “LAT25.82N” is all one continuous string with no spaces. This is the same for the longitude, the grid ‘X’ & ‘Y’ values as well as the Station ID. The Station ID (STID) should be the 4-letter WMO ID (KMIA).

The commands for Telphigram and Stuve plots are similar:

TEPH LAT25.82N LON80.28W > Lat/Lon location
TEPH X71 Y13 > Grid X/Y location
TEPH STIDKMIA > Station ID selection

STUV LAT25.82N LON80.28W > Lat/Lon location
STUV X71 Y13 > Grid X/Y location
STUV STIDKMIA > Station ID selection

Sounding Plots
The text within the sounding display is as follows from bottom to top:

MULPL – Most Unstable Lifted Parcel Level
MULCL - Most Unstable Lifted Condensation Level
MULFC - Most Unstable Level of Free Convection
WBZ – Wet Bulb Zero level
FRZLVL – Freezing Level
MUEQL - Most Unstable Equilibrium Level
TROPO – Tropopause (only displayed if listed in observation RAOB report)

Sounding Winds
Winds are displayed in 5 layers in height by color; 0-3km, 3-6km, 6-9km, 9-12km, above 12km

Sounding Plots
The following data are displayed (as referenced in the plot below): Temperature (solid red line), Virtual Temperature (dotted red line), Dew Point (solid blue line), Wet Bulb Temperature (dotted blue line), Parcel track (dotted yellow line). The line characteristics are fixed, the colors are selectable.

Sounding Text Information

MODEL DATA NAMA 00 UTC FRI 26 SEP 2008 > Model data – model name – Date-Time Group
--
STATION ID : MIA /72202 - MIAMI INTL AIRPORT > Station Location Info
LAT/LON: 25.82 / -80.28 > Location Latitude and Longitude
GRDX/GRDY 71 / 13 > Grid X/Y Location
--
FRZLVL: 4696.99 > Freezing Level (meters)
PWATER: 4.08 > Precipitable Water (cm)
CONVT: 28.77 > Convective Temperature
HSIZE: 1.12 > calculated Hail Size
DENBUOY: 1.00 > Density Buoyancy
-- PARCEL --
CAPE: 847.55 > Convective Available Potential Energy
CIN: -10.53 > Convective Inhibition
LIFTED: -3.57 > Lifted Index (deg c)
This is the Skew-T plot sounding.
This is the Telphigram plot sounding

This is the Stuve plot sounding
Hodograph Displays

WINGRIDDS can produce hodograph displays and they apply for either model data or observation data. If model data is displayed, data from all levels (except boundary and sigma levels) will be displayed. If data is requested from an observation data file, 2 situations exists; if the data request is from a RAOB reporting station, the wind from the full RAOB report will be displayed. However, if the data request is from an area between reporting stations, only the interpolated gridded data will be displayed.

The wind speed rings are either dynamically scaled to the maximum wind speed so the whole display area is filled or they can be set to a fixed maximum wind. (refer to ‘Customizing WINGRIDDS’.)

WINGRIDDS Commands

The Hodograph displays can either be created using the menu dialog (above) or from the WINGRIDDS command line. Command-line location can be requested from either a Lat/Lon location, Grid-point X/Y location or Station ID. The commands for hodograph plots are as follows:

HODO LAT25.82N LON80.28W > Lat/Lon location
HODO X71 Y13 > Grid X/Y location
HODO STIDKMIA > Station ID selection

NOTICE – as with the sounding commands, there is a space between command parameters *however* there are no spaces in the command parameters. “LAT25.82N” is all one continuous string with no spaces. This is the same for the longitude, the grid ‘X’ & ‘Y’ values as well as the Station ID. The Station ID (STID) should be the 4-letter WMO ID (KMIA).

Hodograph Text Information

MODEL DATA NAMA 00 UTC FRI 26 SEP 2008 > Model data – model name – Date-Time Group
--
STATION ID : MIA /72202 - MIAMI INTL AIRPORT > Station Location Info
LAT/LON: 25.82 / -80.28 > Location Latitude and Longitude
GRDX/GRDY 71 / 13 > Grid X/Y Location
--
-- PARCEL --
CAPE: 847.55 > Convective Available Potential Energy
CIN: -10.53 > Convective Inhibition
LIFTED: -3.57 > Lifted Index (deg c)
KINDEX: 25.93 > K Index
TOTAL: 40.92 > Totals Index
CRSTOT: 18.08 > Cross Totals Index
VERTOT: 22.84 > Vertical Totals Index
SHWLTR: 1.88 > Showalter Index
SWEATX: 163.27 > SWEAT Index
VVMAX: 15.46 > Vertical Velocity Maximum (mps)

-- WIND --
AVG DIR/SPD: 247.19 /12.62 > Average Wind Direction and Speed
MEAN WIND DIR/SPD: 252.24 /28.00
STORM MOTION 30/75 DIR/SPD: 254.00 /7.24
STORM MOTION 15/85 DIR/SPD: 239.00 /8.20
BUNKERS RM STORM MOTION (DIR/SPD): 316.55 /14.15
BUNKERS LM STORM MOTION (DIR/SPD): 164.31 /14.86
CORFIDI VECTOR (DIR/SPD): 262.11 /10.73
RM STORM REL HELICITY: -1664.46
LM STORM REL HELICITY: -1041.40
RM STORM REL HOLICITY: -225.95
The following markers are present on the Hodograph display:

- Mean Wind Direction/Speed Marker
- Storm Motion 30/75 Direction/Speed Marker
- Storm Motion 15/85 Direction/Speed Marker
- Bunkers Right-Moving Storm Motion Direction/Speed Marker
- Bunkers Left-Moving Storm Motion Direction/Speed Marker
- Corfidi Vector
BUFKIT File Generation

WINGRIDDS can produce BUFKIT Data files and they apply for only model data. The files will be generated for each forecast hour from the gridded data file contents and any diagnostic commands which are required will be executed to create the needed data points. The BUFKIT Data file will be stored in the BUFKIT Destination Directory which is selected in the ‘Properties’ dialog (refer to ‘Customizing WINGRIDDS’). The user needs to ensure the correct destination directory for the BUFKIT installation is selected.

WINGRIDDS BUFKIT Data File Naming Convention

The BUFKIT Data File naming style within WINGRIDDS uses the following convention:

`XXXXXXXXX_YYYYYY.buf`

Model Name Location.buf

The Model name will be the 3-letter ID for the model used in WINGRIDDS. The Location can be either the Station ID, Lat/Lon point or the Grid X/Y point.

Therefore, for a Lat/Lon entry, the BUFKIT file name would be;
`NAM_37.97N 75.69W.buf`

or, for a Wallops Island, Va. Station ID entry, the BUFKIT file name would be;
`NAM_KWAL.buf`

or, for a Grid X/Y entry, the BUFKIT file name would be;
`NAM_37X 75Y.buf`

WINGRIDDS Commands

The BUFKIT Data files can either be created using the menu dialog (above) or from the WINGRIDDS command line. Command-line location can be requested from either a Lat/Lon location, Grid-point X/Y location or Station ID. The commands for BUFKIT Data file generation are as follows:

```
BUFK LAT25.82N LON80.28W  > Lat/Lon location
BUFK X71 Y13            > Grid X/Y location
BUFK STIDKMIA           > Station ID selection
```

NOTICE – as with the sounding commands, there is a space between command parameters *however* there are no spaces in the command parameters. “LAT25.82N” is all one continuous string with no spaces. This is the same for the longitude, the grid ‘X’ & ‘Y’ values as well as the Station ID. The Station ID (STID) should be the 4-letter WMO ID (KMIA).
When the BUFKIT Data File generation command is accepted, WINGRIDDS will go through each forecast hour of the currently opened model data file and process the required parameters and diagnostic calculations. The screen will show the progress of the process by showing the following message in the upper left corner of the screen:

PROCESSING BUFKIT DATA...PLEASE WAIT - FORECAST HOUR

With the forecast hours increasing till it reaches the end. At that time the screen will show the following:
Trajectory Display

WINGRIDDS can generate Trajectory plots which show the movement of air parcels over time in either the forward direction (parcel moving away from location) or backward direction (air moving toward the location). Trajectories are plotted on either constant pressure surfaces or constant theta (Isentropic) surfaces.

WINGRIDDS Commands

The Trajectory displays can either be created using the menu dialog (above) or from the WINGRIDDS command line. Command-line location can be requested from either a Lat/Lon location, Grid-point X/Y location or Station ID. The commands for trajectory plots are similar to the other grid-point plots but has an extra direction command as follows:

- TRAJ LAT25.82N LON80.28W FWD > Lat/Lon location – forward
- TRAJ X71 Y13 FWD > Grid X/Y location - forward
- TRAJ STIDKMIA BKW > Station ID selection - backward

NOTICE – as with the sounding commands, there is a space between command parameters *however* there are no spaces in the command parameters. “LAT25.82N” is all one continuous string with no spaces. This is the same for the longitude, the grid ‘X’ & ‘Y’ values as well as the Station ID. The Station ID (STID) should be the 4-letter WMO ID (KMIA).

The extra command at the end (FWD/BKW) shows the direction the trajectory should be calculated. If the trajectory should be plotted on an isentropic surface, the level must be selected prior to issuing the TRAJ command.
This is showing a forward trajectory plot on a constant pressure surface. At each forecast hour location there will be an arrow head drawn as well as two boxes. The boxes will show the pressure level at that location and the forecast hour at that location. On constant pressure plots, the pressure value will not change.
This is showing a backward trajectory plot on a constant pressure surface. The boxes are the same as on the forward trajectory on pressure surface.

Trajectory Display – Forward - Isentropic
This is showing a forward trajectory plot on an Isentropic (constant theta) surface. The boxes are the same as on the forward trajectory on pressure surface but notice the pressure values are changing with the movement of the air parcel on the isentropic surface height.

Surface Frontal Positions

WINGRIDDs now has the ability to read the NCEP issued ASUS Coded Surface Bulletin files (both regular and High resolution versions). See the screen shot below:

There is a new Frontal Display button on the WINGRIDDs toolbar right next to the Observation Data button.

WINGRIDDs can only plot frontal positions when an observation data file is opened and when there is an ASUS Coded Surface Bulletin file exists with the time that matches the observation time.
When the user opens an observation data file, WINGRIDDS searches the ASUS Coded Surface Bulletin data files which are stored in the WINGRIDDS\Obs\Surface\Front directory to see if there are any files with date-time groups which match the observation time in the observation data file. If a match is found, WINGRIDDS remembers the ASUS Coded Surface Bulletin file name and enables the Frontal Display button on the WINGRIDDS toolbar. If the opened data file is from a model or there is no ASUS Coded Surface Bulletin data file to match the opened observation data file, this button is grayed out and disabled. When the user wishes to display frontal positions and the Frontal Display button is enabled, just click on the Frontal Display button or, from the WINGRIDDS command line, type ‘FRNT’.

Since ASUS Coded Surface Bulletin data files are issued every 3 hours, if there is an obs data file which does not match the frontal data file time exactly, when WINGRIDDS performs its’ search, it will check to see if there are any frontal data files which may be up to 2 hours older that the obs data file. If a file is found, it will use the frontal file closest to the obs file time automatically.

-- Product Menus

This menu option controls the display of WINGRIDDS products. A product is a display generated by executing a series of WINGRIDDS commands contained in a macro file (refer to ‘Defining Products’). When you select this option, the ‘Product Category’ menu is displayed (Fig.21). When you select a choice from the ‘Product Category’ menu, the corresponding ‘Command Window’ window is displayed (Fig.22).

Product Category

This menu displays a list of product categories that are available in your version of WINGRIDDS and is similar to the ‘Table of Contents’ of a book. Each category contains a group of related products that belong to it. Both the product categories and the actual products in each category can be modified by your system administrator to meet the needs of your environment (refer to ‘Defining Products’).
Position the mouse to the desired choice and click. After a category is selected, a list of products available in that category is displayed.
Command Window

The ‘Command Window’ menu contains a description of the products that are available for the product category you selected. The name of the product category you chose from the ‘Product Category’ menu is shown at the top of the menu. When you select a product, the results are displayed on the screen.

Fig. 22

Selections from the ‘Command Window’ window are made using the same procedures as for the ‘Product Category’ menu.

Position the mouse to the desired choice and click.
Product overlays
Two or more product displays can be overlaid using the Overlay button. After the display of the first product is completed, click, then the next product selection or command entered will be overlaid on the current display.

Stepping through product displays for successive times
Special Tool Bar buttons are provided which allow you to step through displays of products at sequentially increasing or decreasing forecast hours.

Displays the current product at the next time.
Displays the current product at the previous time.
Redisplays the current product at the current forecast hour.

The forecast hours selected by the time looping characters depend on the forecast hours within the data file.

Erasing the Screen
The command EMAP will erase the display area and show a blank map or clicking the ‘Erase Map’ button on the Toolbar.

Print Options
The command to print the screen is PRNT or clicking the ‘Print Screen’ button on the Toolbar.

-- Command Line Operations
The Command Line commands to be entered to start and control all processes (refer to Appendix C). Using this mode allows the greatest flexibility, but also requires the greatest understanding of WINGRIDDS. Once commands are entered in the command line, either click the Go Button or press the [Enter] key on the keyboard.

NOTE: All command requests are processed from right to left (a la Reverse Polish Notation). As such, the command HGHT&WIND will produce a Wind field first, a Height field in a second color.

-- 1 Panel/4 Panel Operations
The WINGRIDDS viewing area can be viewed as a traditional single viewing area or it can be subdivided into 4 windows. The following commands have been added;

1PNL – switch from 4 panel view mode to 1 panel view mode
4PNL – switch from 1 panel view mode to 4 panel view mode
WIN1 – select Window 1 to display data (default in 1PNL mode)
WIN2 – select Window 2 to display data (not available in 1PNL mode)
WIN3 – select Window 3 to display data (not available in 1PNL mode)
WIN4 – select Window 4 to display data (not available in 1PNL mode)
The commands 1PNL & 4PNL must be entered as standalone commands and cannot be combined with other commands in a command string.

Each window is treated as a separate viewport so any data combinations can be displayed in each window. However, remember, WINGRIDDS can be in only one data ‘state’ at a time (PLAN mode, CROSS mode or TIME mode) and it does not care which window it draws to and it is not up to WINGRIDDS to keep track. For example, you display some PLAN mode data in Window 1. You then switch to Window 2 and configure for a CROSS mode display. This will work fine and cross section data will be processed and displayed in Window 2. However, if you switch back to Window 1 but stay in CROSS mode, the next command(s) will be displayed in CROSS mode in Window 1 unless you switch to back to PLAN mode after switching to Window 1. You, the operator, must be explicit about what data you want to be displayed and in which window. This also applies to viewing different data files in different windows. When switching windows, you must also explicitly switch to the data file which matches that window.

When switching between different panel modes, it is *highly* advised you re-calculate any PLAN, CROSS or TIME displays.

The 4 panel windows can be displayed in one of two variations with a window banner or without. There is an entry in the WINGMODE.DAT file which controls this feature which will be covered later.

The most important thing to remember when using WINGRIDDS is 4 panel mode is that the more space, the better. The higher you can make your computer screen resolution, the better the data display will appear.

The tool bar at the top of the main WINGRIDDS window has 4 buttons which control the panel mode and window selection.

Screen Printing – When the PRNT command is issued by itself in 4 Panel mode, only the current active window will be printed. If the PRNT is preceded by the ALWN command, all 4 windows will be printed (along with the command line).

Screen Saving – When the SAVS command is issued by itself in 4 Panel mode, only the current active window will be printed. If the SAVS is preceded by the ALWN command, all 4 windows will be saved (along with the command line).

Animation – 4 Panel animation can ONLY be accomplished through the use of the ANMA (Animate Macro) command in a command macro. Below is an example of the use of the ALWN command in an animation macro. This macro will be using both a Plan view and a Cross Section view. Whenever Plan & Cross view are combined in a 4 Panel animation, it is presumed the Plan view & Cross section view have been configured prior to the execution of the macro to animate them together.
Defining Products

A product is a display produced by executing a sequence of WINGRIDDS commands that are stored in an ASCII formatted file. These files which are called *macros* or *command files* are placed in the MACROS directory. Macro filenames are composed of a 4 character macro name the extension CMD (for example, DWPD.CMD). You can execute a macro from both Command Line and Products Menu.

-- Command Line execution

To execute macros

To execute a macro from the Command Line enter the name of the macro .

DWPD.

The above entry erases the screen and produces a display of DeW Point Depression.

To overlay macros

A macro can be overlaid on the display produced by a previous command or macro. To overlay a macro enter the name of the macro : (colon key).

TEMP

DWPD:

The above sequence of commands erases the screen, displays TEMPerature, and overlays temperature with DeW Point Depression.

Frequently used macro

The name !!!!.CMD is reserved for a frequently used macro. This file is created by copying an existing macro or using a text editor to enter a set of frequently used WINGRIDDS commands. To execute this macro from Command Line press . (period key).

-- Products Menu execution

To display products

A product is generated by executing a series of WINGRIDDS commands contained in a macro file. The results are displayed on the screen.

1. Select 'Products' from the main menu.
 The 'Product Category' menu appears which shows you a list of product categories that are available.

2. To select a category, position the mouse to the desired choice and left-click.
 After a category is selected, the 'Command Window' menu appears which shows you the first page of a list of products available under the selected category.

3. Select a specific product in the same manner as a category.
 The 4 letters that appear to the left of the product description are the name of the macro which is executed to create the desired product.
To overlay two or more products

1. Select the first product.

2. When the display of the first product is complete, press button then select the product you wish to overlay.

Default products
WINGRIDDSS is delivered with a default set of menus and products. You are encouraged to develop additional products to meet the needs of your environment. The command lines required to display a product must be stored in a macro file. You must then add to and/or modify the menu system before you can display new products in Products Menu. Remember to include the associated HELP files. These procedures are discussed in the following sections.

-- Overlay data from different files
Overlaying is the term used to refer to the simultaneous display of multiple data fields. Data from different files can be overlaid on the same plot providing the following conditions are met:

1. The data must be on the same grid projection, though not necessarily from the same model.
2. The initial and final grid points used in any data subsetting must be the same. This means that the areas selected during the ingest process must be identical.

If the above conditions are not met, a message is displayed indicating that the files are of a different size or type. If this condition occurs when a file is opened, the current plot is cleared from the screen and the available fields for the current forecast hour are displayed.

-- Product directories
The product menus and the macro files used by WINGRIDDSS are stored in the product directory WINGRIDDSS\MACROS. The MACROS directory is the active directory from which WINGRIDDSS references files.

-- Product menus
The product menus are stored in ASCII formatted files which are located in the WINGRIDDSS\MACROS directory and may be modified by your system administrator. The 'Product Category' menu is similar to the 'Table of Contents' in a book. It provides a list of product categories. When you select an entry from the 'Product Category' menu, a list of the available products in that category is displayed ('Product List' menu).
The entries for the 'Product Category' menu are stored in the file, CMDMENU.LST.

This file can be modified using a standard text editor. Each line in the file defines a specific product category. A maximum of 72 characters can be entered on a line. The lines are displayed sequentially in groups of 18 lines per screen. The file can contain a maximum of 10 screens of data (180 categories).

WINGRIDDSS automatically 'numbers' the order of appearance for each entry on the menu page. All other characters displayed for the entry lines must be contained in the menu file. All lines in the menu must contain text. If you wish to leave an empty line for clarity, add dashes as shown in the example below. Supply a dummy 'Product List' file that contains a line of blanks. For the example below, the file CMDMENU.012 is a dummy file (refer to Appendix A).

The file contents for the first screen of the default 'Product Category' menu are listed below. A complete listing is contained in Appendix A.

------------- Begin file CMDMENU.LST ---------------
BASIC PCGRIDDS SETUP
SURFACE MAPS
UPPER AIR MAPS
STABILITY INDICIES AND MISC.
PLOT PREDEFINED MAPS FOR SELECTED TIME AND LEVEL
EXPERIMENTAL QPF MAPS
CHOOSE NEW MAP FOR DISPLAYS
OVERVIEW OF ENTIRE FORECAST CYCLE
DETAILED OVERVIEW OF A SINGLE TIME

BUILD YOUR OWN MAPS
CUSTOM INTERACTIVE BRIEFING
BOUNDARY LAYER PRODUCTS (RH, wind, etc...)
"ANY LEVEL" PRODUCTS (ie. choose level you want) (RH, wind, etc...)
LAYER PRODUCTS (Q vectors, Potential Vorticity, Mean RH, etc...)
RAIN/SNOW PRODUCTS (Critical Thickness, Estimated Snowfall, etc...)
ISENTROPIC PRODUCTS (Isentropic Lift, Potential Vorticity, etc...)
CONVective/SEVERE WEATHER (CAPE, Estimated Storm Motion, LI, etc...)
HEAVY PRECIPITATION PRODUCTS (Precipitable Water, etc...)
WINTER TYPE PRECIPITATION - MENU 1 [MUST SPECIFY VALID FX HOUR]
WINTER TYPE PRECIPITATION - MENU 2 [MUST SPECIFY VALID FX HOUR]
WINTER TYPE PRECIPITATION - MENU 3 [MUST SPECIFY VALID FX HOUR]
SEVERE CONVECTION - MENU 1 [MUST SPECIFY VALID FX HOUR]
SEVERE CONVECTION - MENU 2 [MUST SPECIFY VALID FX HOUR]
SEVERE CONVECTION - MENU 3 [MUST SPECIFY VALID FX HOUR]
SEVERE CONVECTION - MENU 4 [MUST SPECIFY VALID FX HOUR]
QPF - MENU 1 [MUST SPECIFY VALID FX HOUR]
QPF - MENU 2 [MUST SPECIFY VALID FX HOUR]
MAPS SURFACE ANALYSIS [MUST SPECIFY VALID FX HOUR]

WAFS - Display ICAO Upper-Air MAPS
Set WAFS Map Display Areas
WAFS - WIND/TEMPERATURE Charts for Americas
------------- End page CMDMENU.LST ---------------
Product List file

Name

All the files for the ‘Product List’ menus have the name CMDMENU. The line number of the entry in the 'Product Category' file (CMDMENU.LST) determines the extension of the file (CMDMENU.###) that provides the information for the corresponding 'Product List' menu. For example, if you select the entry ‘SURFACE MAPS’ which is on line 1 of the 'Product Category' file, the product list contained in the file, CMDMENU.001, is displayed.

Format

This file can be modified using a standard text editor. Each line in the file describes a specific product. The lines are displayed sequentially in groups of 17 lines per screen. The file can contain a maximum of 10 screens of data (170 products).

A maximum of 72 characters can be entered on a line. The first 4 characters of each line in a 'Product List' file must be the name of the macro file that corresponds to the selected entry. For example, if you select the entry, 'Mean Sea-level Pressure and 1000-500mb Thickness' from CMDMENU.001 (listed below), the macro file, SFTH.CMD, is executed.

WINGRIDDS automatically ‘numbers’ the order of appearance for each entry on the menu page. All other characters displayed for the entry lines must be contained in the menu file. In the example below, some entries are left blank for clarity. If the user selects a blank entry, WINGRIDDS return to the menu.

The contents for the first screen of the default 'Product List' file, CMDMENU.001, are listed below. Complete listings of all the default 'Product List' files are contained in Appendix A.

............. Begin file CMDMENU.002

***** SURFACE MAPS *****
SFTH Mean Sea-level Pressure and 1000-500mb Thickness (Set TIME first)
10TH 1000 mb Height and Winds, 1000-500mb Thickness (Set TIME first)
10TD 1000 mb Height, Dew Point and Wind (Set TIME first)
10TE 1000 mb Height, Equiv. Pot. Temp., and Winds (Set TIME first)
NSTM NGM MSL Pressure, S982 Temperatures and Winds (Set TIME first)
NSTD NGM MSL Pressure, S982 Dew Points and Winds (Set TIME first)
NSTE NGM MSL Pressure, S982 Equiv. Pot. Temp. and Winds (Set TIME first)
ESTM ETA MSL Pressure, B015 Temperature and Winds (Set TIME first)
ESTD ETA MSL Pressure, B015 Dew Points and Winds (Set TIME first)
ESTE ETA MSL Pressure, B015 Equiv. Pot. Temp. and Winds (Set TIME first)
THPW MSL Pressure, 1000-500mb Thickness, Precip. Water (Set TIME first)
P24L Loop 24 Hour Precipitation Totals for Model cycle (Reset TIME after)

SFIL Change Active File (Must have multiple files open)
SFHR ** Set TIME ** (Forecast Hour: F00,F12,F24,F36,F48,...)

............. End page CMDMENU.002
--- MACRO files

MACRO files contain a sequence of WINGRIDDS command lines that are executed in series and can be used as shorthand notations for frequently used command sequences or to produce specific graphical products. The command lines may contain a maximum of 16 WINGRIDDS commands and aliases in upper or lower case letters (refer to 'User Defined Alias Commands'), but they cannot reference another macro.

Note: The commands within a command line are processed from right to left. Refer to Appendices B, C, and D for a more detailed description of the full set of WINGRIDDS commands.

The following parameters can be set from within a macro: forecast hour, time range, vertical level, and layer. If the macro is run from Command Line, these settings will remain in effect after the completion of the macro. If the macro is run from Products Menu, the settings normally remain in effect only for the duration of the macro. At the end of the macro, the settings return to the values they had before the macro was started. If you want the settings defined in a macro to remain in effect after the completion of the macro, you must add the PMSV command to the beginning of the macro.

To execute a command macro from the command line, type the name of the macro file a period '. '. For example, if the command macro is named WTMP.CMD, you would enter:

```
WTMP.
```

and click [Enter] or press [Enter].

To execute a command macro from the Products Menu, simply click on the ‘Products’ entry on the menu line, then select the category of your choice from the Products menu which opens a Command Menu. Here, you select the actual Command Macro from the selection listed by either double-clicking with the mouse on the selection or single-clicking the selection then click the OK button.

When a macro is executed, the results from processing the requested command lines are displayed in sequence with a prompt to click [Enter] or press [Enter] between displays when needed. Below is listed a sample macro file which requires you to press [Enter] after each command line. This sample file sets the display to PLAN view, requests the user to press [Enter], then reads the WIND data, converts the Vector wind to KNoTs (VKNT), and plots the resulting vectors as wind BARBs.

```
PLAN
BARB VKNT WIND
```

If you want to eliminate the prompt to press [Enter] after each command line, use the LOOP and ENDL (END Loop) commands. All command lines between these commands are then executed without a request to press [Enter]. The command file listed below only pauses for you to press [Enter] after the ENDL command.

```
LOOP
PLAN
BARB VKNT WIND
ENDL
```
Listed below is an example of a macro file (WTMP.CMD) that displays wind as barbs and temperature contours as dashed lines. An explanation is included after every line to describe the action of each command in the line.

Note: Within a macro, either an & or a / can be used to indicate that two sets of data will be overlaid on the same display.

```
LOOP
   -- LOOP The prompt to press [Enter] is suppressed until the ENDL command is executed or the end of file is encountered.

PLAN
   -- PLAN Set screen to PLAN view

LNDF
   -- LNDF Do Not print DeFault Labels

LTX1 WIND / TEMPERATURE Contours
   -- LTX1 Display the Label TeXt following this command on line 1 of the plot.

LTM1 LLN1
   -- LLN1 Display the Label, forecast LeNgth, on line 1 of the plot.
   -- LTM1 Display the Label, TiMe, on line 1 of the plot.
   -- The label on line 1 has the order: text, forecast length, time.

LFD2 LFL2
   -- LFL2 Display the Label, Flight Level, on line 2 of the plot.
   -- LFD2 Display the Label, Forecast model Date, on line 2 of the plot.
   -- The label on line 2 has the order: level, date.

LMN3 LFO3
   -- LFO3 Display the Label, Forecast model Origination, on line 3 of the plot.
   -- LMN3 Display the Label, forecast Model Name, on line 3 of the plot.
   -- The label on line 3 has the order: origination, name.

CLR2 DASH CIN2 TEMP&CLR7 BARB VKNT WIND
   -- WIND Get the WIND field from the gridded data file.
   -- VKNT Convert units for Vector wind data to KNoTs.
   -- BARB Plot wind as BARBs.
   -- CLR7 Use data-display CoLoR 7 for the barbs.
   -- & End plot 1 and prepare to overlay next plot.
   -- TEMP Get the TEMPerature field from the gridded data file.
   -- CIN2 Set Contour INterval to 2 units (degrees)
   -- DASH Use DASHed lines for contours.
   -- CLR2 Use data-display CoLrR 2 for the contour lines.

ENDL
   -- ENDL Reinstate the need to press [Enter] after each command line. This command is optional if it is the last command in the macro.
```
Listed below is an example of a macro file (IC24.CMD) that sets the flight level to 240, displays wind as barbs and displays temperature values at the grid points. An explanation is included after every line to describe the action of each command in the line.

```plaintext
LOOP
 -- LOOP The prompt to press [Enter] is suppressed until the ENDL command is executed or the end of file is encountered.

PLAN
 -- PLAN Set screen to PLAN view

LNDF
 -- LNDF Do Not print DeFault Labels

LTX1 WIND / TEMPERATURE
 -- LTX1 Display the Label TeXt following this command on line 1 of the plot.

LTM1 LLN1
 -- LLN1 Display the Label, forecast LeNgth, on line 1 of the plot.
 -- LTM1 Display the Label, TiMe, on line 1 of the plot.
 -- The label on line 1 has the order: text, forecast length, time.

LFD2 LFL2
 -- LFL2 Display the Label, Flight Level, on line 2 of the plot.
 -- LFD2 Display the Label, Forecast model Date, on line 2 of the plot
 -- The label on line 2 has the order: level, date.

LMN3 LFO3
 -- LFO3 Display the Label, Forecast model Origination, on line 3 of the plot.
 -- LMN3 Display the Label, forecast Model Name, on line 3 of the plot.
 -- The label on line 3 has the order: origination, name.

CLR7 BARB VKNT WIND SLVL 400
 -- SLVL 400 Set the pressure LeVeL to 400 hPa
 -- WIND Get WIND data from the gridded data file.
 -- VKNT Convert units for Vector wind data to KNoTs.
 -- BARB Plot wind as BARBs.
 -- CLR7 Use data-display CoLoR 7 for the barbs.

PPLS DAT+ SCL0 SSUM TEMP RGTN 0 MLTN 0 VCMP LAST CLR2&
 -- This command line overlays temperature data plots on the previous wind display.
 Temperature values are expressed as unscaled whole integers and unsigned values are negative. The digits are plotted above the grid point, but only at grid points where the V component of the wind is positive (‘southerly’) to prevent the wind barbs from overwriting the temperature data.
 -- & Overlay the following plot on current display.
 -- CLR2 Use data-display CoLoR 2.
 -- LAST Retrieve the previous fields (WIND) already stored in memory. This operation is faster than retrieving data from the gridded data file.
 -- VCMP Get the V CoMPonent of the wind field that is stored in memory.
 -- MLTN 0 Set all values Less ThaN 0 as missing data (10**31).
 -- RGTN 0 Replace all values Greater ThaN 0 with 0. This produces a field of zeros and missing values.
```
TEMP Get the TEMPerature field from the gridded data file.
SSUM SUM the previous two Scalar fields. This produces a field of temperature values and missing values. The missing values are located at grid points where the V component of the wind is less than 0.
SCL0 Rounds displays to whole integer numbers.
DAT+ Plot DATa values above (+) the grid point.
PPLS Plot PLuS signs. Unsigned numbers are negative. Plus signs are plotted before positive numbers.

PPLS DAT- SCL0 SSUM TEMP RLTN 0 MGTN 0 VGRD CLR2&

This command line overlays the remaining temperature data on the previous display. Temperature values are expressed as unscaled whole integers and unsigned values are negative. The digits are plotted below the grid point, but only at grid points where the V component of the wind is negative ('northerly') to prevent the wind barbs from overwriting the temperature data.

& Overlay the following plot on current display.
CLR2 Use data-display CoLoR 2.
VGRD Retrieve the the V component of the wind from the Gridded data file. The wind field is no longer available in memory as it was in the previous command line.
MGTN 0 Set all values Greater Than 0 as missing data points (10**31).
RLTN 0 Replace all values Less Than 0 with 0. This produces a field of zeros and missing values.
TEMP Get the TEMPerature field from the gridded data file.
SSUM SUM the previous two Scalar fields. This produces a field of temperature values and missing values. The missing values are located at grid points where the V component of the wind is greater than 0.
SCL0 Rounds displays to whole integer numbers.
DAT- Plot DATa values below (-) the grid point.
PPLS Plot PLuS signs. Unsigned numbers are negative. Plus signs are plotted before positive numbers.

ENDL

ENDL Reinstate the need to press [Enter] after each command line. This command is optional if it is the last command in the macro.

These macro files allow comment lines preceded by the pound-sign ‘#’.

This is a comment
#

-- MACRO Help files
Users who create new macro files are strongly encouraged to also create a macro help file to describe what the macro is doing. Macro help files are simple text files with the same name as the macro but with .hlp as a file extension. They are to be stored within the HELP/ directory for use within WINGRIDDS. For a reference & template as to how help file should be constructed, refer to the preexisting help files within the HELP/ directory. Your assistance in this area will be greatly appreciated by all other users of your macros.
-- Plot Labels

Default labels

Plots are automatically labeled with a default label format. Sample default labels for a temperature plot are shown below.

Plan view

WAFG= 250:LYR=1000/ 500 :FHR= 12:FHRS= 0/ 24::FIL1=WAF28APR.00Z
95/ 4/28/ 0--TEMP
V:10/2003--N/X/MN/SD= -56.49 -42.85 -48.43 3.17

The plan view label displays the following information:

Line 1

<table>
<thead>
<tr>
<th>WAFG</th>
<th>Forecast model name</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVL= 250</td>
<td>Pressure level</td>
</tr>
<tr>
<td>LYR=1000/ 500</td>
<td>Pressure layer</td>
</tr>
<tr>
<td>FHR= 12</td>
<td>Forecast hour</td>
</tr>
<tr>
<td>FHRS= 0/ 24</td>
<td>Time range</td>
</tr>
<tr>
<td>FIL1=WAF28APR.00Z</td>
<td>Last active forecast data file</td>
</tr>
</tbody>
</table>

Line 2

| 95/ 4/28/ 0 | Last active forecast model date (yy/mm/dd/hh) |
| TEMP | Command line that produced the display |

Line 3

V:10/2006	WINGRIDDS version
N/X/MN/SD	Statistics line key: minimum/maximum/mean/standard deviation
-56.49	Maximum data value
-42.85	Minimum data value
-48.43	Mean
3.17	Standard deviation

Time-section (TSCT)

WAFG:Lat/Lon 35S/ 59W=> 36/ 0 :FHR= 12:FHRS= 0/ 24::FIL1=WAF28APR.00Z
95/ 4/28/ 0--TEMP

The time-section label displays the following information when TSCT is used to define the time-section point:

Line 1

<table>
<thead>
<tr>
<th>WAFG</th>
<th>Forecast model name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat/Lon 35S/ 59W</td>
<td>Latitude and longitude coordinates of the time-section point</td>
</tr>
<tr>
<td>=> 36/ 0</td>
<td>Hour range over which the time-section is displayed</td>
</tr>
<tr>
<td>FHR= 12</td>
<td>Forecast hour (used for plan and cross-section)</td>
</tr>
<tr>
<td>FHRS= 0/ 24</td>
<td>Time range (used for plan and cross-section)</td>
</tr>
<tr>
<td>FIL1=WAF28APR.00Z</td>
<td>Last active active forecast data file</td>
</tr>
</tbody>
</table>

Line 2

| 95/ 4/28/ 0 | Last active forecast model date (yy/mm/dd/hh) |
| TEMP | Command line that produced the display |
The time-section label displays the following information when **TSTN** is used to define the time-section point:

Line 1
- **WAFG**: Forecast model name
- **BOS**: Station located at the time section point
- **@42N/ 71W**: Latitude and longitude coordinates of the time-section point
- => **48/ 0**: Hour range over which the time-section is displayed
- **FHR= 12**: Forecast hour (used for plan and cross-section)
- **FHRS= 0/ 24**: Time range (used for plan and cross-section)
- **FIL1=WAF28APR.00Z**: Last active active forecast data file

Line 2
- **95/ 4/28/ 0**: Last active forecast model date (yy/mm/dd/hh)
- **TEMP**: Command line that produced the display

The cross-section label displays the following information when **XSCT** is used to define the cross-section line:

Line 1
- **WAFG**: Forecast model name
- **Lat/Lon 53N/ 14E**: Left latitude and longitude coordinates of the cross-section line
- => **28N/ 77E**: Right latitude and longitude coordinates of the cross-section line
- **FHR= 12**: Forecast hour
- **FHRS= 0/ 24**: Time range
- **FIL1=WAF28APR.00Z**: Last active active forecast data file

Line 2
- **95/ 4/28/ 0**: Last active forecast model date (yy/mm/dd/hh)
- **TEMP**: Command line that produced the display
Cross-section (XSTN)

WAFG: ORD> BOS@42N/ 88W=>42N/ 71W :FHR= 12:FHRS= 0/ 24::FIL1=WAF28APR.00Z
95/ 4/28/ 0--TEMP

The cross-section label displays the following information when **XSTN** is used to define the cross-section line:

Line 1

- WAFG: Forecast model name
- ORD: Station located at left end of cross-section line
- > BOS: Station located at right end of cross-section line
- @42N/ 88W: Left latitude and longitude coordinates of the cross-section line
- =>42N/ 71W: Right latitude and longitude coordinates of the cross-section line
- FHR= 12: Forecast hour
- FHRS= 0/ 24: Time range
- FIL1=WAF28APR.00Z: Last active active forecast data file

Line 2

- 95/ 4/28/ 0: Last active forecast model date (yy/mm/dd/hh)
- TEMP: Command line that produced the display

-- Custom labels

You can produce custom labels using the WINGRIDDS label commands.

Output commands

Eleven of the label commands are 4 character output commands. The first three characters identify the command. The fourth character, indicated schematically by the symbol #, specifies the line number within the total label message. For example, if the entire label contains 3 lines, then **LPL2** specifies that the label for pressure level is on line 2. Listed below are the eleven possible output commands, the type of information displayed, and a sample of the output format.

LTM# TiMe and TiMe range
- VT 12 UTC FRI 28 APR 1995
- VT 12 UTC TUE 7 JUN 1994-00 UTC MON 6 JUN 1994

LPL# Pressure Level and Pressure Layer
- LEVEL=250
- LAYER=1000/500

LFL# Flight Level and Flight Layer
- FL 340 (250 hPa)
- FL LAYER 050-180

LDN# Data file Name
- FILE=WAF28APR.00Z

LFD# Forecast model Date
- From 12 UTC 22 MAR 1991

LMN# forecast Model Name
- WAFG
LFO# Forecast model Origination (text in file WINGLBL.USR)
 DOC/NOAA/NWS WAFC-WASHINGTON

LLN# forecast LeNgth
 12H FORECAST

LLL# Latitude and Longitude (time-section and cross-section only)
 LAT/LON: 35S/ 59W
 LAT/LON: 53N/ 14E=>28N/ 77E

LSN# Station identifier (time-section and cross-section only)
 STNID: BOS
 STNID: ORD=> BOS

LTX# user TeXt
 WIND/TEMPERATURE

Label message lines
The symbol # in all the above commands indicates the line number within the total label message. The total number of lines in a label message depends on the value of the maximum line number specified in the label commands for a plot. If the commands LFL1 LFO3 LTM1 are issued, then the total message will contain three lines with line 2 blank.

Line 1 VT 12 UTC FRI 28 APR 1995 FL 340 (250 hPa)
Line 2
Line 3 DOC/NOAA/NWS WAFC-WASHINGTON

Command entry
LTX# must be entered on a single line its associated text. It cannot be combined with any other commands. The remaining nine commands can be entered on separate lines or combined on one or more lines. All label commands for a plot must be entered before the command line that actually produces the display.

Note: The first label command on a line must start in the leftmost column.

Examples I, II, and III produce the same results: a pressure level label on line 1 and a time label on line 2. Example IV is incorrect because the label command, LPL2, is issued after the plot command line (TEMP).

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFL1</td>
<td>LPL1</td>
<td>LTM2</td>
<td>LTM2</td>
<td>LTM2</td>
</tr>
<tr>
<td>LFO3</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
</tr>
<tr>
<td>LTM1</td>
<td>TEMP</td>
<td>LPL1</td>
<td>LPL1</td>
<td>LPL1</td>
</tr>
<tr>
<td></td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>LPL2</td>
</tr>
</tbody>
</table>

Label construction
Label commands are combined to produce message lines. The labels for a line are displayed in the order that the commands are processed. If multiple commands are on one line, they are processed starting with the rightmost command. LTX# is the exception in that the specified text will always be left justified within the message line. A maximum of 132 characters can be output on one line of a printed copy, but only the first 78 characters are displayed on the screen.
A sample command sequence and its corresponding message lines are shown below.

Commands:
- LTM1 LPL2 LLN2
- LTX2 TEMPERATURE
- TEMP

Label:
- VT 12 UTC FRI 28 APR 1995
- TEMPERATURE 12H FORECAST LEVEL=250

Note: The forecast length precedes the pressure level in the label because the commands are processed from *right to left*.

Default labels

The initial setting for each plot is to display default labels. This condition is *always restored* at the start of a new display after all overlays are completed.

Default labels can be combined only with the **LTX#** and **LWT#** label commands. If any other label commands are used, default labels are automatically turned off for the *current* plot. Default labels are restored for the next plot regardless of whether it is a new display or an overlay, unless the **LNDF** command is used.

LNDF (No Default labels)

This command turns off the default labels. No labels are produced unless you enter label commands. This condition will remain in effect for all overlays except menu overlays using the [F2] key. The default label state is restored when all overlays are completed. The **LNDF** command is useful when overlaying multiple data fields. If label commands are entered when the first data field is displayed, the **LNDF** command prevents the display of default labels for the remaining overlays.

LDEF (Default labels)

This command turns on the default labels. If **LNDF** was used to turn off the default labels, you can use the **LDEF** command to turn on the default labels before all overlays are completed. It will remain in effect until another **LNDF** command is issued.

Label processing

The control label commands (**LNDF**, **LDEF**, **LWT#**) and the **LTX#** command are processed for all command sequences that produce a display. The remaining output label commands are *only* processed for command sequences that generate a display from gridded data fields. If gridded data fields are not displayed, output label commands are ignored and no label of any kind except text is displayed for the current plot. For example, if you are in time-section mode, the command **LFO1 HOUR** does *not* produce labels because hour lines are generated internally and not from a gridded data field. Similarly, if you are in plan view, the command **LFO1 LATT** does *not* produce labels because latitude lines are not produced from a gridded data field. However, the command **LFO1 TEMP** *does* produce labels because TEMP is a gridded data field. The following examples illustrate these rules.
Example 1

Commands:
- LNDF Turn off default labels.
- LTM1 Command is not processed because LATT does not use gridded data.
- LATT Display latitude lines.
- TEMP& Overlay temperature contours on latitude lines.

Label: No labels

Example 2

Commands:
- LATT Display latitude lines. Default labels are produced.
- LNDF Turn off default labels.
- LTM1 Display time label on line 1 of the label message.
- TEMP& Overlay temperature contours on latitude lines.

Label: VT 12 UTC FRI 28 APR 1995

Example 3

Commands:
- LNDF Turn off default labels.
- LATT Display latitude lines.
- LTM1 Display time label on line 1 of the label message.
- TEMP& Overlay temperature contours on latitude lines.

Label: VT 12 UTC FRI 28 APR 1995

Label display

Labels are automatically displayed on the screen after a data field is processed. All previous labels are rewritten on the screen with the display of each overlay. This prevents contour lines from writing over the label text. By default a set of label message lines starts on line 1, the line following the command line on the screen.

For printed output the label message lines are written consecutively at the bottom of the page immediately below the plot. The number of label lines you can print depends on the maximum number of lines reserved for labels. The default value is 6. You can revise this value by modifying the file WINGMODE.DAT (Refer to 'Customizing WINGRIDDS').

LWT# (begin WriTe) This command specifies the line number of the screen to start Writing the current label set. If this command is not used then the label set starts at line 1. This command has no effect on the label position for printed plots.
Overlays

Overlays is the term used to refer to the simultaneous display of multiple data fields. If an overlay is composed of two plots with identical time and level specifications and user labels are requested for both plots, only one set of labels will be displayed. This applies to all label commands except LTX#. The text associated with an LTX# command will always be displayed. The example below illustrates the overlay restrictions.

Note: The pressure level label is not displayed because it is requested for plot 2 and labels are suppressed for overlays with the same time and level specifications.

<table>
<thead>
<tr>
<th>Commands:</th>
<th>Display time on line 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTM1</td>
<td></td>
</tr>
<tr>
<td>LTX2 WIND</td>
<td>Display text on line 2</td>
</tr>
<tr>
<td>WIND</td>
<td>Display wind data</td>
</tr>
<tr>
<td>LPL3</td>
<td>Display pressure level on line 3</td>
</tr>
<tr>
<td>LTX4 TEMPERATURE</td>
<td>Display text on line 4</td>
</tr>
<tr>
<td>TEMP&</td>
<td>Overlay temperature contours</td>
</tr>
</tbody>
</table>

Label: VT 12 UTC FRI 28 APR 1995
 WIND
 TEMPERATURE

Overlays produced by using the REST command (refer to ‘Print Commands’ in ‘Printing’) to display saved graphics are treated as separate displays for label purposes. This means that user labels for both the restored graphics and the first overlay are displayed. Menu overlays produced using also fall into this category. The previous example was modified slightly to illustrate this concept.

Note: The pressure level label is now displayed because the overlay was used in conjunction with the REST command.

<table>
<thead>
<tr>
<th>Commands:</th>
<th>Save graphics in file PLT1.SVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAVE PLT1</td>
<td></td>
</tr>
<tr>
<td>LTM1</td>
<td>Display time on line 1</td>
</tr>
<tr>
<td>LTX2 WIND</td>
<td>Display text on line 2</td>
</tr>
<tr>
<td>WIND</td>
<td>Display wind data</td>
</tr>
<tr>
<td>ENDS</td>
<td>Stop saving graphics</td>
</tr>
<tr>
<td>ERAS</td>
<td>Erase screen</td>
</tr>
<tr>
<td>REST PLT1</td>
<td>Restore graphics in file PLT1.SVG</td>
</tr>
<tr>
<td>LPL3</td>
<td>Display pressure level on line 3</td>
</tr>
<tr>
<td>LTX4 TEMPERATURE</td>
<td>Display text on line 4</td>
</tr>
<tr>
<td>TEMP&</td>
<td>Overlay temperature contours</td>
</tr>
</tbody>
</table>

Label: VT 12 UTC FRI 28 APR 1995
 WIND
 LEVEL= 250
 TEMPERATURE
Annotation of screen displays

Default labels and those produced by label commands are displayed both on the screen and on printer output. The **TXT#** command can write text annotation only to the screen.

TXT# (screen TeXT) This command must be entered on a single line its associated text. It cannot be combined with any other commands. The # symbol indicates the line on the screen to which the text is written. Text written with the **TXT** command will never be output to the printer nor can it be displayed with the **REST** command. This command is processed and output immediately. It should be issued AFTER the data field is displayed.
WINGRDDS Command Line Operations

The following discussions describe the operation of WINGRDDS Command Line.

NOTE: The operating mode of WINGRDDS is no longer *only* Menu mode or Command mode. The two have been blended together so both the Menu selections and the Command Line are available for use.

Command Mode requests are input as series of up to 10 ALPHA-NUMERIC INSTRUCTIONS separated by Spaces or Delimiters, the [Enter] key or clicking the GO Button.

A maximum of 50 commands can be entered on 1 line as indicated by the following guiding template line which is displayed at the top of the screen.

```
Command >
```

NOTE: With few exceptions, a line of commands is processed in order from RIGHT to LEFT or Reverse Polish Notation (RPN), so the last command entered on a line is the first to appear.

**- Initial Default values -

The default Flag Variable values are:

A Forecast Hour (FHOR) -- Default = 12

A four letter Grid Level (LEVL) -- Default = 850

A pair of Forecast Hours (FHRS) consisting of -- Default = 00/24
[See FHR1 and FHR2 later -- Used for time differences, etc.]

A grid layer (LAYR) consisting of two levels -- Default = 1000 500
[See LVL1 and LVL2 later -- Used for level differences, etc.]

The default values can be customized by the user by modifying the file USER\INITGRID.SPC, in which the initial values of the six variable parameters LEVL LVL1 LVL2 FHOR FHR1 FHR2 are specified.
- Changing Flag Variable Values - Level/Layer Specification
The LeVeL/LaYeR defaults can be Set by typing SLVL or SLYR the four character specifications in the next input positions. For example,

- `SLVL 1000` - Changes default level to 1000 mb,
- `SLVL MSL` - Changes default level to mean sea level
- `SLVL SFC` - Changes default level to Surface level
- `SLVL S896` - Changes default level to the Sigma level centered at 896 mb
- `SLVL I300` - Changes default level to the 300K Isentropic level
- `SLVL Y240` - Changes default level to the Hybrid-B level 240 (if in data file)
- `SLVL H150` - Changes default level to the 15,000 ft Height level
- `SLVL PV12` - Changes default level to the 1.2 PVU level
- `SLVL P+05` - Changes default level to the PV 500ft above Tropopause
- `SLVL 850 300` - Changes layer bottom and top default levels (in order) to 850 and 300 mb.

For convenience, the LeVeL can also be specified by simply typing the desired level as part of the command line to the right of the desired field, e.g., reading from RIGHT to LEFT, the command sequence `TEMP 850` will first set the level to 850 mb and then read, decode and contour the temperature field.

- Changing Flag Variable Values - Time Specification
The time defaults can be changed by typing FHOR [or SFHR] or FHRS [or SFHS] and answering a free-format prompt.

Alternatively, the time defaults can be changed by typing SFHR or SFHS the desired hour in the next 4 character command line locations. For example,

- `SFHR 12` - Changes the time default to a 12 hour Forecast,
- `SFHR -1` - Changes the time default to the ANALysis,
- `SFHR 00` - Changes the time default to the 00 h initialized fields,
- `SHFS 12 24` - Changes the time pair defaults to the 12 and 24 h Forecasts.

For convenience, SFHR can also be omitted from the command string if desired, typing instead only ANAL, F00, F12, F24, F36 or F48 for those specific times, e.g., reading from RIGHT to LEFT, the command sequence `TEMP 850 F24` will first set the forecast hour to 24 hours, then set the level to 850 mb and lastly read and contour the temperature field.

- Specifying the Display Area
The display area can be changed by typing AREA at the LEFT end of the command line, followed a new central latitude and longitude (given by degrees followed immediately by the letters N/S or E/W to indicate hemisphere) and North-to-South display distance in degrees. For example, the command sequence `AREA 40N 20E 20` will provide a display over southern Europe, extending roughly from 30 to 50 N.

If no hemisphere indicator is included, positive values are used to represent Northern and Western hemispheric locations. -- If no lat/lon information is included, a prompt will appear showing location at the center of the grid.

The Entire grid area can be displayed by entering AREA 3 zeros, e.g., `AREA 0 0 0`. The initial display AREA used in each WINGRIDDs session can be specified in a file INITMAP.CRD.
**- Choosing Custom Map Backgrounds

The map background can be customized by the addition of the argument \texttt{MAP*} as the last \texttt{AREA} argument. The ‘*’ is 1-9/A-Z, for example, \texttt{MAP1} – \texttt{MAP9} and \texttt{MAPA} - \texttt{MAPZ}.

The \texttt{MAP*} command argument refers to the user-created \texttt{MAP*.DAT} files located in the \texttt{WINGRIDD$\backslash USER} directory. These file(s) contain the same information as the \texttt{MAPFILE.DAT} file; a list of map data files which the user wants displayed on the screen.

The \texttt{MAP*} argument can be used this way; say, for example, with a wide-view of the grid area, the user wants little detail. So, in \texttt{MAP1.DAT}, the user lists a low resolution map file. The command:

\begin{verbatim}
AREA 0 0 0 MAP1
\end{verbatim}

Is executed. However, when the user zooms in to an area of interest, they may want more map detail like county outlines or rivers. So, in \texttt{MAP2.dat}, the user enters a high resolution map file and a county or river map file. Then, the user executes:

\begin{verbatim}
AREA 40N 20E 20 MAP2
\end{verbatim}

And the new map is drawn with the contents of the \texttt{MAP2.DAT} file. This allows the user to have map background flexibility on the fly instead of modifying the \texttt{MAPFILE.DAT} for every change of the display.

If the \texttt{MAP*} argument is not included in the \texttt{AREA} command, the map is drawn from default data from the \texttt{WINGMODE.DAT} and/or \texttt{MAPFILE.DAT} configuration files.

The Area can also be defined centered at a \texttt{STatioN} location using the \texttt{ASTN} command a 3 or 4 character station identifier and a North-to-South display distance. If no N-to-S distance is included, a value of 30 is used. This default can be changed using \texttt{NS##}, where ## is the N-to-S distance.

**- Choosing 1 Panel or 4 Panel Display Mode

\texttt{WINGRIDD$} support a display area with either 1 panel or 4 panels. The initial configuration is set in the \texttt{WINGMODE.DAT} file. The panel mode can be changed from 1 Panel to 4 Panel by typing \texttt{4PNL} at the LEFT end of the command line. The panel mode can be changed from 4 Panel to 1 Panel by typing \texttt{1PNL} at the LEFT end of the command line.

Once either operation is complete, to ensure the map or CROSS/TIME Section grid background is properly displayed, you must recalculate the map/grid by going to the respective configuration dialogs (\texttt{PLAN}, \texttt{CROSS}, \texttt{TIME}) under the Display Menu and just click the \texttt{[OK]} button and allow the backgrounds to be recalculated to fit properly in the new windows. If no CROSS or TIME sections have been configured when the panel mode is switched, they do not need to be recalculated.
- Choosing Custom Map Navigation Mode

There are, at this time, 3 different grid projections you can use to interpolate data to; Equidistant Latitude/Longitude (Lat/Lon) - best for near the Equator region (0-30 deg) Lambert Conic Conformal (NLCC) – best for the mid-latitudes (30-60 deg) Polar Stereographic (NPST) – best for above 60 deg to the Poles.

There are two different ways to set up a custom grid display and this can be done either before or after any data files have been opened – there is a command-line option or it can be done through a graphical dialog.

CSTMGRID [Center Lat, Center Lon, Blowup Size, (Tangent Cone), Grid Type]

CSTMGRID [Grid Spec File Name]

Notice, this is argument string is similar to the AREA command. There are two different command string argument types with this command -- depending on which grid projections you wish to use. For Lat/Lon & Polar Stereographic grids, you would use the Center latitude, Center Longitude, Blowup Size & Grid Type arguments however, the Lambert Conformal also requires a Tangent Cone (in degrees) entry as well. As with the AREA command, the coordinate information is describing the *center* of the grid and the *size* (in N/S Latitude) of the grid.

*****NOTICE*****
1) All 4 numeric entries are to be entered in *WHOLE* degrees a period.
2) All negative Latitude entries are for Southern Hemisphere and positive Latitude are Northern Hemisphere.
3) ALL negative Longitude entries are for Western hemisphere and all positive Longitude are for Eastern Hemisphere.
4) All Lambert Conformal identities for Grid Type are “NLCC” – even for Southern Hemisphere Views.
5) All Polar Stereographic identities for Grid Type are “NPST” – even for Southern Hemisphere Views.

- Command Structures -- Displaying Primary Data Fields -

Once a file has been opened, data can be displayed by typing a series of requests on the command line. In general, a command line is read by the program from RIGHT TO LEFT to request grids and perform various functions. Results of the last (left most) operations are then displayed automatically.

To display any of the grids stored in the gridded data set, simply type the 4 letter NAME of the grid [Enter]. (Again, a list of the available grids will be shown by typing LIST .) For example,

HGHT - will clear the screen & display contours of the 850 mb HeiGHT field
TEMP - will clear the screen & display contours of the 850 mb TEMPerature

A listing of the parameters possibly included in the gridded data sets follows:

- Primary Gridded Data Fields:

HGHT > Geopotential HeiGHT (meters)
PRES > Pressure (mb)

TEMP > TEMPerature (degree C)
THTA > Potential Temperature - THeTA(degree K)

MIXR > MIXing Ratio (g/kg)
RElh > Relative Humidity (%)
DWPT > DeW Point Temperature (degree C)
TMPK > TeMPerature (degrees K)
TMPF > Temperature (degrees F)
THTE > Equivalent Potential Temperature - THeTa/E (degree K)

WIND > Total WIND vector (m/sec)
WSPD > Total Wind Speed (m/sec)
WDDF > Packed value of Wind Direction/speed (tens of degrees and m/sec)
WDRC > Wind DiReCtion (degrees)
BWND > WIND Barbs (m/sec)
BKNT > Wind Barbs (KNoTs)

PMSL > Mean Sea Level Pressure fields, provided without resetting LEVeL
 Note: If mean sea level pressure (GRIB ID=002) is not available, then an attempt is made to retrieve the RUC Reduction, the Eta Model Reduction, and the Standard Atmosphere Reduction, in that order.

TPCP > Total Precipitation fields, provided without resetting LEVeL (mm)
CPCP > Convective Precipitation fields, provided without resetting LEVeL (mm)
TPCI > Total Precipitation fields, provided without resetting LEVeL (in)
CPCI > Convective Precipitation fields, provided without resetting LEVeL (in)

 NOTE: NCEP models accumulate precipitation in 6 hour increments then reset. **TPCx/CPCx** retrieve the precipitation accumulation at the current forecast hour since the last 6 hour reset.

LIFT > Pre-calculated LIFTed Index, provided without resetting LEVeL
PWAT > Precipitable Water fields, provided without resetting LEVeL

THCK > Generates Thickness fields determined by LVL1/LVL2 settings
TWND > Generates Thermal Wind determined by LVL1/LVL2 settings

- Automatically derived parameters -
In addition to displays of LISTed forecast fields already in the data file, a number of derived parameters and functions can also be requested and calculated automatically as the data are being read from the computer. For example, a request of **THTA** will automatically calculate and display the potential temperature (THeTa) field. Some of the automatically calculated derived parameters include:

THTA (Potential Temperature)
SDEF (Saturation Deficit)
MIXR (Mixing Ratio)
SMIX (Saturation Mixing Ratio)

GEOS (Geostrophic Wind - vector)
AGEO (Ageostrophic Wind - vector)

LNDX > Provides Lifted Index calculated between LVL1 and LVL2
PLCL > Calculates the Pressure of the LCL from LEVeL data
PDEF > Calculates the Pressure lift needed for saturation form the LCL

See the Appendix or the Online Command Help for more commands and detailed explanations.
- Overlaying displays on a single command line -

Command requests can also be presented in strings, with & (or /) as a command delimiter to indicate field overlays. For example,

RELH& - will overlay the RELative Humidity analysis on the previously requested fields in a second color, according to the sequence of colors on the color bar at the bottom of the screen.

TEMP&HGHT - will display contours of HeiGHTs at 850 mb and the 850 mb TEMPerature field in different colors on the same map.

NOTE: All command requests are processed from right to left (a la Reverse Polish Notation [RPN]). As such, the command **TEMP&HGHT** will produce a Height field first, a temperature field in a second color.

Data from different files can be overlaid under the following conditions:

1. The data must be on the same grid projection (models can differ)
2. The initial and final grid points used in any data subsetting must be the same (i.e., identical areas must be selected during the ingest process).

If these conditions are not met, a message is displayed indicating the files are a different size or type. The current plot is cleared; processing stops.

- Changing Contour Intervals -

The Contour INTerval will be calculated automatically based on the variability of the field by default. Specific Contour INTerval requests can be specified in several ways. By typing **CINT** to the left of a field requested for display, the maximum and minimum of the field will be written on the screen and a prompt for a desired contour interval will appear. For example,

CINT HGHT - will read the height field and ask the user for a desired contour interval (to be input in free format, with a 0 input requesting an automatically calculated ‘reasonable’ interval.

NOTE: A contour interval specification normally is only in effect for one plot. To keep a contour specifications from one plot to another, type **CISV**. The contour interval specification mode can be returned to the single plot convention by typing **CINX**. For example,

HGHT CINX&DWPT&TEMP CISV CIN5 - will read the TEMPerature and DeWPoint field and display them with a 5 degree contour and then reset to automatic contour determination and overlay the HeiGHT contours.
- Simplified Contour Interval selection -

Any contour interval can also be requested without the additional user prompt by including any of the following commands to the left or right of the desired field:

- **CIN5** - contour intervals of 5 units
- **CIN#** - contour intervals of # units
- **CI10** - contour intervals of 10 units
- **CI0** - contour intervals of 0 units
- **C100** - contour intervals of 100 units
- **C00** - contour intervals of 0 units
- **CI.2** - contour intervals of .2 units
- **CI.#** - contour intervals of .# units
- **C2+3** - contour intervals of 2000 (10**2) units
- **C#+$** - contour intervals of #*10**$ units
- **C2-3** - contour intervals of .002 (10**-2) units
- **C#$** - contour intervals of #*10**-$ units

For example, the command line –

```
HGHT CI60 SLVL 500&PRES CIN4 SLVL MSL
```

- will display the Mean Sea Level Pressure field contoured at 4 mb intervals and the 500mb Heights contoured at 60m intervals.

- Changing Contour Colors / Dashed Contours

The Contour / Wind display colors will be assigned automatically in sequence according to the template shown at the bottom of the screen. The default color can be overridden by using the **CLR#** command,

where **CLR1** refers to the first color on the template,
- **CLR2** refers to the second color on the template,
- **CLR0** refers to the tenth color on the template,
- **CLRA** refers to the first dashed color on the template,
- **CLRX** refers to the first dotted color on the template.

Dashed contours can also be produced by including **DASH** in the command line. **DASH** is only in effect for one plot and must be reset for additional displays.

The commands **DNEG** and **DPOS** can be used to dash either the Negative or Positive contours in a data field.

** - Single Line Contour Plot –**

WINGRIDDS can plot single-line scalar plots. For example, if you wish to plot the 5700 dm height contour on the 500 mb level, enter the following commands:

```
HGHT 500 SLIN 5700
```

The new command, **SLIN ####**, is Single LiNe a four digit value of the contour you wish to plot. This is valuable for creating “spaghetti plots” of the same contour from different model runs or comparing different times or making a single contour stand out from the others like the freeze line. The **SLIN** command is valid for only that one plot and must be called every time it is needed.
**- Plotting Digital Grid Values at Data Points / Scaling Output -

Digital values of the gridded data can also be requested as follows:

- **DATA** > Sets display mode to plot data values at grid points.
- **DATT** > Sets display mode to plot data values above grid points.
- **DATB** > Sets display mode to plot data values below grid points.
- **DATO** > Sets display mode to plot data values high Over grid points.
- **DATU** > Sets display mode to plot data values low Under grid points.

Data Displays and Contour Labels can be requested to display specific digits using the following Scaling and Modulo commands:

- **SCL0** / **DML0** - Display only signed digits greater than or equal to 10^0 (1)
- **SCL1** / **DML1** - Display only signed digits greater than or equal to 10^1 (10)
- **SCL#** / **DML#** - Display only signed digits greater than or equal to $10^#$
- **SC-1** / **DM-1** - Display only signed digits greater than or equal to 10^{-1} (.1)
- **SC-#** / **DM-#** - Display only signed digits greater than or equal to $10^{-#}$
- **MOD#** > Display labels using Modulo of SCALED display value and $10^#$

**- Wind Displays -

Vector displays will be generated automatically for vector quantities, or when two grids area queued for plotting. Again, 4 letter commands can be used to change the mode of display to either arrows **{AROW}**, barbs **{BARB}, m/s** or streamlines **{STRM}**. Winds can be displayed on pressure, height, Sigma, Potential Vorticity or Isentropic levels.

Several wind options are available. These include:

- **WIND** to display the gridded total wind data,
- **GEOS** to display the geostrophic wind, and
- **AGEO** to display the ageostrophic wind.

For example,

- **WIND&HGHT** - displays contour of the height field with wind arrows overlaid

A number of shorthand alias requests are also available, including

- **WKNT** > Retrieves the total wind Vector in knots.
- **WMPH** > Retrieves the total wind Vector in mph.
- **WKPH** > Retrieves the total wind Vector in kph.
- **BKNT** > Retrieves the total wind Vector in knots and sets display as wind barb.
- **BMPH** > Retrieves the total wind Vector in mph and sets display as wind barb.
- **BKPH** > Retrieves the total wind Vector in kph and sets display as wind barb.
- Changing Wind Arrow Length –
The contour interval specification also acts as means for changing the length of arrows used in wind displays. Normally, the lengths of wind arrows are scaled so that the arrow representing the largest wind speed in a display is set to be equal to the distance between two adjacent grid points. Adjustments in the length can be made using the "CI" commands, where the requested "contour interval" specifies the speed to be plotted as a one grid interval length arrow. For example,

WIND CI10 - will produce wind arrows in which the length of a 10 m/s wind is one grid spacing unit.

Displaying Wind Barbs or Streamlines:

Winds can also be displayed as Barbs by typing BARB.

Winds can also be displayed as Streamlines by typing STRM.

To return the wind display to Arrows type AROW.

- Use of Layers or Multiple time periods -
Layer and/or time manipulation of PRIMARY DATA VARIABLES can be triggered by inserting keywords to the right of the desired variable. Options include:

LDIF (Layer Difference)
LAVE (Layer Average)
LTOT (Layer Sum or Total)
TDIF(+) (Time Difference)
TAVE(+) (Time Average)
TTND(+) (Time Tendency - TDIF/time)
TTOT(+) (Time Sum or Total)

NOTE: These commands MUST be positioned to the RIGHT of the variable name and can ONLY be used with PRIMARY VARIABLES.

For example, the sequence of commands

SLYR 1000 500 - will calculate the DIFFerence in HGHT between the top and bottom levels defined by the SLYR command, in this case producing a 1000 to 500 mb thickness field, and

SFHS F00 F24 - will calculate and display the difference in the HeiGHT fields between the initial conditions and the 24 h forecast.
Entries in the SLYR or LVL# may be in either pressure, Height, Sigma or isentropic levels.

For example, the command line

SLYR 750 400 - will set the layer limits to 750 and 400 mb
SLYR I300 I320 – will set the layer limits to the isentropic layers of 300K and 320K.

Calculations using either the top or bottom levels of the layer defined by SLYR and/or the beginning or end times of a forecast period defined by FHRS can be requested without explicitly resetting the level or time defaults by inserting the following keywords to the right of the desired variable:

LVL1 (First level of LAYR)
LVL2 (Second level of LAYR)
FHR1 (First time of FHRS)
FHR2 (Second time of FHRS)

For example, the command line

HGHT LDIF&HGHT LVL2&HGHT LVL1 CI60 SLYR 1000 500 - will set the layer limits at 1000 and 500 mb and then produce contours of the 1000 and 500 mb Heights, the 1000-500 mb thickness, all contoured with 60 m intervals.

NOTE: Once a layer or time period is set, it continues in effect for the remainder of that plot request unless overturned by another entry.

** - Native RUC (Rapid Update Cycle) Hybrid-B Levels –

WINGRIDDS can work with the native RUC level format of Hybrid-B levels. Hybrid-B coordinates are defines as roughly equivalent to levels of constant Theta (Isentropic). The RUC Hybrid-B levels are identified in WINGRIDDS with the ‘Y###’ symbols with ‘###’ standing for the numbers ranging from 010 to 500 in increments of 10. These levels roughly correspond to Isentropic levels in the following way:

HYBRID = THETA

HYBRID = THETA

<table>
<thead>
<tr>
<th>HYBRID</th>
<th>ISENTROPIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y010 = I224</td>
<td>Y260 = I312</td>
</tr>
<tr>
<td>Y020 = I232</td>
<td>Y270 = I314</td>
</tr>
<tr>
<td>Y030 = I240</td>
<td>Y280 = I316</td>
</tr>
<tr>
<td>Y040 = I245</td>
<td>Y290 = I318</td>
</tr>
<tr>
<td>Y050 = I250</td>
<td>Y300 = I320</td>
</tr>
<tr>
<td>Y060 = I255</td>
<td>Y310 = I322</td>
</tr>
<tr>
<td>Y070 = I260</td>
<td>Y320 = I325</td>
</tr>
<tr>
<td>Y080 = I265</td>
<td>Y330 = I328</td>
</tr>
<tr>
<td>Y090 = I270</td>
<td>Y340 = I331</td>
</tr>
<tr>
<td>Y100 = I273</td>
<td>Y350 = I334</td>
</tr>
<tr>
<td>Y110 = I276</td>
<td>Y360 = I337</td>
</tr>
<tr>
<td>Y120 = I279</td>
<td>Y370 = I340</td>
</tr>
<tr>
<td>Y130 = I282</td>
<td>Y380 = I343</td>
</tr>
<tr>
<td>Y140 = I285</td>
<td>Y390 = I346</td>
</tr>
<tr>
<td>Y150 = I288</td>
<td>Y400 = I349</td>
</tr>
<tr>
<td>Y160 = I291</td>
<td>Y410 = I352</td>
</tr>
<tr>
<td>Y170 = I294</td>
<td>Y420 = I355</td>
</tr>
</tbody>
</table>
If WINGRIDDS is in Pressure level mode, and a Hybrid-B data file is loaded, any parameter or diagnostic command will be automatically interpolated from Hybrid-B to the requested pressure level.

** - Animation –

WINGRIDDS has the ability to animate both PLAN and CROS screen plots. This is accomplished in one of three ways. From the WINGRIDDS Command-line, you wish to animate the 500 mb heights through the full forecast length of the model run, you enter:

HGHT 500 & ANIM

The command for animation is ANIM and must be the most right command on the line. This command will cycle through every forecast hour in the active model file. The following are other animate commands:

ANMA – ANimate Macro
ANFA – ANimate Forecast hours
ALWN – Use ALL WINdows in Animation

Command Macros can now be animated as well. The command ANMA (Animate Macro) must be before any LOOP command and there must be only one LOOP/ ENDL set in the macro.

If you wish to compare two or more model runs which may have different time steps or you wish to only animate specific time steps, it is easiest to create a Macro but the function can be done from the Command line if the total commands are less than 16. Use the following example to use only the 00h, 12h, and 24h time steps out of the 00h, 06h, 12h, 18h and 24h time steps available:

From the Command line:

ENDA&ENDL&HGHT 500&SFHR 24&LOOP&ENDL&HGHT 500&SFHR 12&LOOP&ENDL&HGHT 500&SFHR 00&LOOP&ANFA

Or in a Macro:

ANFA
LOOP
SFHR 00
HGHT 500
ENDL
LOOP
SFHR 12
HGHT 500
If you notice, the first Macro command executed is **ANFA** and the plots are made up of repeating the **LOOP/ENDL** command with the last Macro command being **ENDA** which is ENDAnimation creation. When the **ANFA** command is executed, WINGRIDDS proceeds through the forecast hours and “builds” the animation frames. Once it has cycled through all the forecast hours, it will begin to loop through the animation cycle with a preset delay between frames and with a longer delay between cycles to show the end of the cycle.

NOTICE – While WINGRIDDS is building the animation sequence, the user can not go and do other WINGRIDDS or Windows operations which will affect the screen. In building the animation sequence, WINGRIDDS is actually taking a “snap-shot” of every screen and it will capture whatever is on the screen whether it pertains to the animation process or not.

Animation in 4 Panel Mode

WINGRIDDS can perform animations while in 4 Panel mode with either the animation in a single panel or in all 4 panels, each with different information. Animations in a single panel work exactly the same as if WINGRIDDS was in 1 Panel mode. The animation commands will be effective to the panel which has control focus. However, the technique to perform animation which involve all 4 panels is different and can only be done through a Command Macro file using the **ANMA** command along with the **ALWN** command instructing the animation function to use “All Windows”.

****NOTICE –
1) WINGRIDDS must already be in 4 Panel mode before attempting a 4 panel animation.
2) The **ALWN** must be inside the **LOOP**
3) The WIN* commands to change focus to the respective window is a separate command line

Below is an example MACRO

```
ANMA
LOOP
ALWN
PLAN
WIN1
HGHT
WIN2
WIND/WSPD CTFG
WIN3
CROS
TEMP/MIXR
WIN4
THTA
ENDL
```
-- Animation Control

There are seven controls on a floating Tool Bar. This Floating Tool Bar can be positioned anywhere within the main WINGRIDDSS Window. The operator can use the buttons within the Tool Bar to control the animation operation while the animation is cycling; the button speeds up the loop speed, the button slows down the loop speed.

The animation cycle can also be switched from a free-run mode to a step-mode at any time by pressing the button to step forward one frame or press the button to step back one frame or pressing the button to pause the motion.

The animation cycle will stay in the step mode till the button places it back in loop mode. The animation cycle is terminated by pressing the button. At the end of the animation sequence, all of the bitmap files in the ANIMATION directory are deleted.

**- Specify a Cross Section Path

Cross-section displays can display data on isentropic surfaces and constant height surfaces as well as pressure surfaces. The isentropic levels are predefined from 270K-400K every 10k. The height surfaces can be displayed in either feet or meters. This selection is made within the ‘WINGRIDDSS Settings’ tab of the ‘Properties’ dialog. The vertical range for CROS sections in height mode is 500 ft to 65,000 ft in 5,000 ft increments or 2000 meters to 24,000 meters in 2,000 meter increments. These are fixed in software. The user can use pressure and forecast hour data in the file USER\INITGRID.SPC, which is the default settings or the user can utilize all the model pressure levels or use the commands XLVL (file name) to use predefined pressure levels. Cross-section displays for pressure surfaces can be established by typing XSCT, displays for Isentropic surfaces can be established by typing XSCI and displays for height surfaces can be established by typing XSCH. They are the left display latitude and longitude and the right latitude and longitude. (If no lat/lon information is included, a prompt will appear.) Two formats can be used, either latitudes and longitudes followed IMMEDIATELY (no spaces between) by 1 character hemisphere indicators (e.g., 40S for 40 degrees South latitude) or signed numeric values, where positive values indicate Northern and Western Hemispheres.

Cross-sections can also be defined between two Station locations using the Command XSTN for pressure levels, XSTI for Isentropic levels or XSTH for Height levels two 3 or 4 letter station identifiers. Once a cross-section has been defined, the base map can be redrawn with the cross section path shown as a dotted line using either the MAP command (to overlay a map on the existing product) or the EMAP command to erase the screen before drawing the map.

To set up a cross section using all model levels, these commands are executed:
ALVL
XSCT 55.00 80.00 25.00 80.00
To set up a cross section using XLVL with the file name ‘505m’, these commands are executed:
XLVL 505m
XSCT 55.00 80.00 25.00 80.00

The look of the Cross section display is created by a series of commands executed from the files USER\CROSSSECTION.DAT for cross sections. This file can be customized by the user to change the look of the display. If these files are not found while attempting to build a CROS section, the program will default to the current operational CROS display.

The following commands are what are included in the USER\CROSSSECTION.DAT file:

NLBL XLTN&
NCLB NLBL PRES&
XLBL SCL0 NLBL LAST&
XLBB SCL0 NLBL ALAT&
XLBB SCL0 NLBL DATT ALON&

To remove the cross section path, type either XSTN 9999 or XSCT 9999.

Defining a cross section path also initiates the cross section display mode. Display modes can be switched from cross section to plan view by typing PLAN, and from plan view to the previously established cross section by typing CROS.

**- Cross Section Wind displays
Cross-sectional wind displays can be modified to provide rotated, cross-section relative wind representations by typing XREL to the left of the desired wind type. Individual cross-sectional relative components can be displayed using TANG and NORM for contour of the tangential and normal wind components and VTNG and VNRM for vector component displays.

Vertical circulations displays of the tangential component of the wind and the vertical velocity are produced by typing VCRC a wind type.

A number of shorthand notation aliases are available for cross-sectional wind displays, including:

WNDX to display the total wind rotated relative to the cross section
GEOX to display the geostrophic wind rotated relative to the cross section
AGEO to display the ageostrophic wind rotated relative to the cross section
WCRC to display vertical/tangential circulations of total wind
GCRC to display vertical/tangential circulations of geostrophic wind
ACRC to display vertical/tangential circulations of ageostrophic wind

**- Specify a Time Section Point
Time-section displays can display data on isentropic surfaces and constant height surfaces as well as pressure surfaces. The isentropic levels are predefined from 270K-400K every 10k. The height surfaces can be displayed in either feet or meters. This selection is made within the ‘WINGRIDDS Settings’ tab of the ‘Properties’ dialog. The vertical range for TIME sections in height mode is 500 ft to 65,000 ft in 5,000 ft increments or 2000 meters to 24,000 meters in 2,000 meter increments. These are fixed in software. The user can use pressure and forecast hour data in the file USER\INITGRID.SPC, which is the default settings or the user can utilize all the model pressure/forecast hours or use the commands XLVL and THRS (file names) to use predefined pressure levels and forecast hours respectively.
The direction, length and increment of default forecast hours along the bottom of the screen is determined by line three of the file `USER\INITGRID.SPC` as shown below:

```
13  72  66  60  48  42  36  30  24  18  12  06  00  00  00  00  00  00  1
```

This shows the forecast hours will span from hours 00 to 72 every six hours and increase from right to left. If it is desired for the forecast hours to increase from left to right, the entry should look like this:

```
13  00  06  12  18  24  30  36  42  48  54  60  66  72  00  00  00  00  00  00  1
```

For full information concerning `USER\INITGRID.SPC` configurations, see: `Customizing the WINGRIDDS System -- Initial Pressure Levels and Forecast Hours`

When creating a Time-section with all model forecast hours (ATIM), the direction of the forecast hours will be determined by the order of the hours in the `USER\INITGRID.SPC` file.

Time-section displays can be established for pressure surfaces by typing `TSCT`, for Isentropic surfaces by typing `TSCI` and for Height surfaces by typing `TSCH`. They are the display latitude and longitude. (If no lat/lon information is included, a prompt will appear.) Two formats can be used, either latitudes and longitudes followed IMMEDIATELY (no spaces between) by 1 character hemisphere indicators (e.g., 40S for 40 degrees South latitude) or signed numeric values, where positive values indicate Northern and Western Hemispheres.

Time-sections can also be defined for a Station location using the `TSTN` command with a 3 or 4 letter station identifier. Once a time-section has been defined, the base map can be redrawn with the time section point shown as a dotted line using either the `MAP` command (to overlay a map on the existing product) or the `EMAP` command to erase the screen before drawing the map.

To set up a time section using all model levels, these commands are executed:

```
ALVL
TSCT  55.00   80.00  25.00   80.00
```

To set up a time section using XLVL with the file name ‘505m’, these commands are executed:

```
XLVL 505m
TSCT  55.00   80.00  25.00   80.00
```

To set up a time section using all model levels and all forecast hours, these commands are executed:

```
ATIM
ALVL
TSCT  42.37   71.03
```

To remove the time section point, type either `TSTN 9999` or `TSCT 9999`.

Defining a time section also initiates the time section display mode. Display modes can be switched from time section to plan view by typing `PLAN`, and from plan view to the established time section by typing `TIME`.

The look of the Time section display is created by a series of commands executed from the file `USER\TIMESECTION.DAT` for time sections. This file can be customized by the user to change the look.
of the display. If this file is not found while attempting to build a TIME section, the program will default to the current operational TIME display. The following commands are what are included in the USER\TIMESECTION.DAT file:

NCLB NLBL PRES&
XLBL SCL0 NLBL LAST&
XLBB SCL0 NLBL HOUR&
NLBL HOUR&

-Sounding Commands

The Sounding displays can either be created using the menu dialog (above) or from the WINGRIDDSS command line. Command-line location can be requested from either a Lat/Lon location, Grid-point X/Y location or Station ID. The commands for Skew-T plots are as follows:

SKEW LAT25.82N LON80.28W > Lat/Lon location
SKEW X71 Y13 > Grid X/Y location
SKEW STIDKMIA > Station ID selection

NOTICE – there is a space between command parameters *however* there are no spaces in the command parameters. “LAT25.82N” is all one continuous string with no spaces. This is the same for the longitude, the grid ‘X’ & ‘Y’ values as well as the Station ID. The Station ID (STID) should be the 4-letter WMO ID (KMIA).

The commands for Telphigram and Stuve plots are similar:

TEPH LAT25.82N LON80.28W > Lat/Lon location
TEPH X71 Y13 > Grid X/Y location
TEPH STIDKMIA > Station ID selection
STUV LAT25.82N LON80.28W > Lat/Lon location
STUV X71 Y13 > Grid X/Y location
STUV STIDKMIA > Station ID selection

-Hodograph Commands

The Hodograph displays can either be created using the menu dialog (above) or from the WINGRIDDSS command line. Command-line location can be requested from either a Lat/Lon location, Grid-point X/Y location or Station ID. The commands for hodograph plots are as follows:

HODO LAT25.82N LON80.28W > Lat/Lon location
HODO X71 Y13 > Grid X/Y location
HODO STIDKMIA > Station ID selection

NOTICE – as with the sounding commands, there is a space between command parameters *however* there are no spaces in the command parameters. “LAT25.82N” is all one continuous string with no spaces.
This is the same for the longitude, the grid ‘X’ & ‘Y’ values as well as the Station ID. The Station ID (STID) should be the 4-letter WMO ID (KMIA).

**-Trajectory Commands-

The Trajectory displays can either be created using the menu dialog (above) or from the WINGRIDDSS command line. Command-line location can be requested from either a Lat/Lon location, Grid-point X/Y location or Station ID. The commands for trajectory plots are similar to the other grid-point plots but has an extra direction command as follows:

TRAJ LAT25.82N LON80.28W FWD > Lat/Lon location – forward
TRAJ X71 Y13 FWD > Grid X/Y location - forward
TRAJ STIDKMIA BKW > Station ID selection - backward

NOTICE – as with the sounding commands, there is a space between command parameters *however* there are no spaces in the command parameters. “LAT25.82N” is all one continuous string with no spaces. This is the same for the longitude, the grid ‘X’ & ‘Y’ values as well as the Station ID. The Station ID (STID) should be the 4-letter WMO ID (KMIA).

The extra command at the end (FWD/BKW) shows the direction the trajectory should be calculated. If the trajectory should be plotted on an isentropic surface, the level must be selected prior to issuing the TRAJ command.

**-BUFFKIT Data Generation Commands-

The BUFKIT Data files can either be created using the menu dialog (above) or from the WINGRIDDSS command line. Command-line location can be requested from either a Lat/Lon location, Grid-point X/Y location or Station ID. The commands for BUFKIT Data file generation are as follows:

BUFF LAT25.82N LON80.28W > Lat/Lon location
BUFF X71 Y13 > Grid X/Y location
BUFF STIDKMIA > Station ID selection

NOTICE – as with the sounding commands, there is a space between command parameters *however* there are no spaces in the command parameters. “LAT25.82N” is all one continuous string with no spaces. This is the same for the longitude, the grid ‘X’ & ‘Y’ values as well as the Station ID. The Station ID (STID) should be the 4-letter WMO ID (KMIA).

When the BUFKIT Data File generation command is accepted, WINGRIDDSS will go through each forecast hour of the currently opened model data file and process the required parameters and diagnostic calculations. The screen will show the progress of the process by showing the following message in the upper left corner of the screen;

PROCESSING BUFKIT DATA...PLEASE WAIT - FORECAST HOUR

**- PRINTING –

WINGRIDDSS prints to the default system printer. This printer can be either local or networked and can print in either Portrait or Landscape mode. The command PRNT or clicking the button on the Tool Bar will print the current screen contents automatically to the Windows default printer and no Print Dialog is
displayed. If you wish to make any modifications to the Windows printer setup, it must be done outside of WINGRIDDS. There are no other print modes in WINGRIDDS as there were in the DOS PCGRIDDS. Print copies seem to look the best at 800x600 video mode. Special thanks goes out to Dave Ballinger for his programming contribution for this function.

Screen Printing – When the PRNT command is issued by itself in 4 Panel mode, only the current active window will be printed. If the PRNT is preceded by the ALWN command, all 4 windows will be printed (along with the command line).

-Saving and Restoring Pre-Generated Graphics
Plots can be saved for rapid redisplay by typing the command SAVE followed by a space and a 4-character file name (the qualifier .SVG will also be added automatically). All plot commands are saved until the command ENDS is used. To restore the saved plot file, either type REST with the file name (again without the .SVG qualifier) or type the file name a semicolon. The results will be displayed over whatever is on the screen already, so be sure to erase the existing graphics using ERAS if you do not want the graphics overlaid on the existing screen display.

For example, the sequence of commands -
```
SAVE 500Z
VORT WIND&HGHT SLVL 500
ENDS
ERAS
REST 500Z  [This command line could alternatively be input as 500Z;]
```
- will create a .SVG file labeled 500Z.SVG, generate contours of the 500 mb HeiGHT and VORTicity fields and save the plotting commands, close the .SVG file, erase the screen and then restore graphics.

The screen contents can be saved to a BMP-format or PNG-format file. The command SAVS a space and a file name up to 20 characters (the qualifier .BMP/.PNG will be added automatically) will save the contents of the screen.

File format is determined by the BMP or PNG entry on line 9 in the WINGMODE.DAT file.

If WINGRIDDS is in 4PNL mode and all 4 windows are to be saved as 1 image, enter ALWN the SAVS command.

-Data Masking Operations
```
[Scalar/Vector] POSMASK([[Scalar Operation]]){AND,OR,NOT}... > Calculate a Positive Mask to filter requested Scalar/Vector operation
```
```
[Scalar/Vector] NEGMASK([[Scalar Operation]]){AND,OR,NOT}... > Calculate a Negative Mask to filter requested Scalar/Vector operation.
```

Masking operations are an exciting new addition to WINGRIDDS operations. They provide a way to create a plot of Scalar or Vector information which only shows data (POSMASK) where other complex parameters are satisfied or it can create a plot of Scalar or Vector information which blocks plotting data (NEGMASK) where other complex parameters are satisfied. The parameters are evaluated using logical operators AND, OR & NOT. Examples of both Positive and Negative masking will be showed below.
Example command for POSMASK;

WIND POSMASK(TEMP GTLT 8 12) AND (RELH GRTN 50) OR (VVEL GRTN 01)

Example command for NEGMASK;

MIXR CTFC NEGMASK(TEMP GTLT 8 12) AND (RELH GRTN 50) NOT (DVRG LSTN 0)

How it works:
POSMASK creates a 'Positive' mask created from multiple SCALAR commands within parenthesis which are separated by MASK BOOLEAN OPERATORS of 'AND', 'OR' & 'NOT'. The resulting mask will control where the first SCALAR or VECTOR is plotted.

NEGMASK creates a 'Negative' mask created from multiple SCALAR commands within parenthesis which are separated by MASK BOOLEAN OPERATORS of 'AND', 'OR' & 'NOT'. The resulting mask will control where the first SCALAR or VECTOR is 'NOT' plotted.

Multiple SCALAR commands can be strung along with multiple BOOLEAN OPERATORS as needed to the 555 Character length limit. All GRIB or Diagnostic calculated scalar parameters can be used.

- Velocity Potential/Stream Function Diagnostics
WINGRIDDS can now calculate Velocity Potential and Stream Function parameters. These parameters include Non-Divergent wind, Irrotational wind, Harmonic wind and a variety of these combinations. These parameters are traditionally calculated on a global scale converting from a uniform cylindrical or gaussian grid to a spectral wave-space grid, perform the calculations then convert the result back to the original grid space. There are new formulas & techniques to approximate these calculations on more limited area grid areas such as Lambert Conformal and Equatorial sections of global Lat/Lon cylindrical grids.

Understand, these parameters and calculations are of most value in the Sub Tropic/Tropic areas of the world and run into 'problems' as you approach the polar regions so if you are using a global grid set, it is advised to ensure the area coverage has the polar regions (+/-60 deg Lat) off screen. Below is a list of references to publications describing Velocity Potential and Stream Function parameters as well as the formulas and research of the techniques used in WINGRIDDS:

The programming library Winteracter, which is used to build and apply the GUI features within WINGRIDDs also has graphics features which can be incorporated into programs. Incorporating these features into WINGRIDDs has yielded five new commands to accomplish a variety of color and pattern contouring within WINGRIDDs. The new features are as follows:

1) Line Based Contouring – this is the same as the regular contouring within WINGRIDDs.

2) Line Based, Graduated Color – This contouring still uses individual lines but each contour value is assigned a color. Color is assigned to Max & Min contour value.

3) Fill Based, Selected Pattern – This contouring uses a fill pattern of either lines at various angles for the contour value or a mesh pattern for the contour value.

4) Fill Based Selected Color – This contouring uses selected colors to be assigned to specific contour values.

5) Fill Based Graduated Color – This contouring uses continuous color gradually changing shades along the contour slope. Like the Line Based, Graduated Color, the color is assigned to the Max & Min contour value.

The individual features will be explained below in detail. **NOTE:** There is NO contour smoothing function available (yet) from Winteracter for these contour features. This means, at times, some contour lines or features may appear blocky or squared off instead of a smooth curve.

The CTLG, CTFP, CTFC & CTFG commands may use default color setting or they can each reference configuration files to assign specific colors and/or assign specific max/min contour values. The configuration files are user configured to generate a unique display to make a certain scalar value stand out and are best utilized within command macros. The file names can be up to 10 characters long but the first three characters *must* match the command it is associated with. The default color/pattern selections for CTLG, CTFP, CTFC & CTFG are contained within WINGMODE.DAT file.

All colors are assigned in RGB (Red, Green, Blue) format with each color assigned a number from 0 – 255 with 0 = darkest & 255 = brightest. This allows for up to 16 million colors if the display is capable. For less color capable displays, the color assignment will be truncated.

<table>
<thead>
<tr>
<th>WINGRIDDs Feature</th>
<th>COMMAND</th>
<th>CONFIG FILE (Optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Based Contouring</td>
<td>CTLN</td>
<td></td>
</tr>
<tr>
<td>Line Based, Graduated Color</td>
<td>CTLG</td>
<td>CLN****** (1-9, A-Z)</td>
</tr>
<tr>
<td>Fill Based, Selected Pattern</td>
<td>CTFP</td>
<td>CFP****** (1-9, A-Z)</td>
</tr>
<tr>
<td>Fill Based, Selected Color</td>
<td>CTFC</td>
<td>CFC****** (1-9, A-Z)</td>
</tr>
<tr>
<td>Fill Based, Graduated Color</td>
<td>CTFG</td>
<td>CFG****** (1-9, A-Z)</td>
</tr>
</tbody>
</table>
Examples:

To display a Line Based Contour of HGHTs,
HGHT CTLN

To display a Line Based, Graduated Color contour of HGHTs with default max/min colors is,
HGHT CTLG

Or to display a Line Based, Graduated Color contour of HGHTs with assigned max/min colors for that type display is,

HGHT CTLG CLNFILTEST

NOTE: when you want to use one of the Color Fill features and overlay another scalar or vector value using regular contouring, the color-fill command MUST be executed first (most-right command) or else any data which is plotted will be overwritten by the color-fill feature. See the following examples:

TEMP & HGHT CTFC GOOD!!!
HGHT CTFC & TEMP BAD!!!

DETAILS
***************** WINGMODE.DAT ****************************
'c:\WINGRIDD\GRIB\WAFT\'
'c:\WINGRIDD\GRIB\NWS\'
'c:\WINGRIDD\GRIB\MOS\'
'c:\WINGRIDD\GRIB\OBS\'
'c:\WINGRIDD\GRIDDATA\'
'METER'
'WORLD'
'C:\WINGRIDD\PRTFIL\'
'.BMP'
'WMO'
'C'
'KTS'
'BARB'
'1PNL'
'BANNER'
'003'
'0 0 150'
'255 0 0'
'0 0 150'
'255 0 0'
'6'
'148 0 211'
'0 0 255'
'0 255 0'
'255 255 0'
'255 0 0'
'139 0 139'
'1'
LINE 17 Contour Line-Based Graduated Min Default Color
LINE 18 Contour Line-Based Graduated Max Default Color
LINE 19 Contour Fill-Based Graduated Min Default Color
LINE 20 Contour Fill-Based Graduated Max Default Color
LINE 21 Number of Colors to follow for use with Contour Fill-Based Selected Colors.
Last LINE Contour Fill-Based Pattern Number

Line Based, Graduated Color

The Line Based, Graduated Color command CTLG (CLN*) will generate a contour line display with each contour line assigned a slightly different color from a graduated scale generated by the routine. The routine is passed a color value for the max of the contour scale and a color value for the min of the contour scale. The routine will generate a smooth contour graduation between the two colors and assign each contour line a specific color depending on the contour interval. The color values can either be the default values listed in the WINGMODE.DAT file or they, along with the min/max contour values, can be assigned through the Line Based, Graduated Color configuration files (CLN*). Below is an example of a Line Based, Graduated Color configuration file.

!Configuration file for Contour Line-Graduated Color
!Displays
!Min Values
!0.0
!Max Values
!9.8E29
!R-G-B Values (Top-min, Bottom-max)
!127 255 0
255 0 0
**
**
************* END-OF-DATA ***********************
**
**

These configuration files must follow this template & order of information. They allow comment lines preceded by an exclamation point '!' and ends with the '*****END-OF-DATA ***' section.

The Min/Max values MUST be in floating-point format and exponential notation is allowed.

RGB values range from 0-255 and are separated by single spaces.
Fill Based, Selected Pattern

The Fill Based, Selected Pattern command CTFP (CFP*) will generate a contour display filled with a line/pattern assigned a different pattern by the routine. The routine is passed a pattern mode. The routine will generate a pattern by looping through line angles (slope up, slope down, horizontal & vertical) and line density (sparse, medium, dense, very dense & extremely dense). The pattern mode value can either be the default value listed in the WINGMODE.DAT file or it, along with the min/max contour values, can be assigned through the Fill Based, Selected Pattern configuration files (CFP*). Below is an example of a Fill Based, Selected Pattern configuration file.

! Configuration file for Contour Line-Fill/Pattern
! Displays
!
! Min Values
! -9.8E29
!
! Max Values
! 0.0
!
! Pattern Mode - 1=Hatched, 2=Crosshatched
!
2

**
**
************* END-OF-DATA *************
**
**

These configuration files must follow this template & order of information. They allow comment lines preceded by an exclamation point ‘!’ and ends with the ‘******END-OF-DATA ***’ section.

The Min/Max values MUST be in floating-point format and exponential notation is allowed.

Pattern Mode can be only 1 or 2

Fill Based Selected Color

The Fill Based Selected Color command CTFC (CFC*) will generate a contour line display with each contour line assigned a specific color from

1) 2 colors with interpolation between the 2 colors or
2) a small set of colors with interpolation between the colors to fill the contour range or
3) specific colors assigned to specific contour values.

The color values can either be the default values listed in the WINGMODE.DAT file or they, along with the min/max contour values, can be assigned through the Fill Based Selected Color configuration files (CFC*). The CFC files can have 3 different modes of operation. Below are examples of the 3 types of Fill Based Selected Color configuration files.
! Configuration file for Contour Line-Fill/Color
! Displays
!
! Color Mode - 1=MAX/MIN COLOR, 2=MULTI INTERPOLATION, 3=INDIVIDUAL COLORS
!
1
!
! Number of Data Entries (ONLY 2 ALLOWED IN COLOR MODE 1)
!
2
!
! Number of Color Entries (ONLY 2 ALLOWED IN COLOR MODE 1)
!
2
!
! Min to Max Values
!
-9.8E29
9.8E29
!
! R-G-B Values (Top-min, Bottom-max)
!
50 0 50
255 255 0
**
**
************* END-OF-DATA **********************
**
**

! Configuration file for Contour Line-Fill/Color
! Displays
!
! Color Mode - 1=MAX/MIN COLOR, 2=MULTI INTERPOLATION, 3=INDIVIDUAL COLORS
!
2
!
! Number of Data Entries (ONLY 2 ALLOWED IN COLOR MODE 1)
!
2
!
! Number of Color Entries (ONLY 2 ALLOWED IN COLOR MODE 1)
!
6
!
! Min to Max Values
!
-9.8E29
9.8E29
!
! R-G-B Values (Top-min, Bottom-max)
!
50 0 50
255 0 255
Configuration file for Contour Line-Fill/Color Displays

Color Mode - 1=MAX/MIN COLOR, 2=MULTI INTERPOLATION, 3=INDIVIDUAL COLORS
3

Number of Data Entries (ONLY 2 ALLOWED IN COLOR MODE 1)
22

Number of Color Entries (ONLY 2 ALLOWED IN COLOR MODE 1)
22

Min to Max Values
4680.0
4740.0
4800.0
4860.0
4920.0
4980.0
5040.0
5100.0
5160.0
5220.0
5280.0
5340.0
5400.0
5460.0
5520.0
5580.0
5640.0
5700.0
5760.0
5820.0
5880.0
5940.0

R-G-B Values (Top-min, Bottom-max)
50 0 50
101 0 101
153 0 153
204 0 204
255 0 255
These configuration files must follow this template & order of information. They allow comment lines preceded by an exclamation point ‘!’ and ends with the ‘*****END-OF-DATA ***’ section.

The Color Mode entry may be 1, 2, or 3. **NOTE**: The selection of Mode 3 will override any contour interval from the command line.

Number of Data Entries and Number of Color Entries must match the number of entries in the respective section. There is a maximum of 200 Data/Color pairs allowed.

The Min/Max values MUST be in floating-point format and exponential notation is allowed.

RGB values range from 0-255 and are separated by single spaces.

The example Configuration file for Mode 3 is set up to show a rainbow display for 500mb HGHTs. The same type of setup can be built for MIXR, TEMP, VTCY PCPT or any scalar display.

Fill Based, Graduated Color

The Fill Based, Graduated Color command CTFG (CFG*) will generate a contour fill display with each contour value assigned a slightly different color from a graduated scale generated by the routine. The routine is passed a color value for the max of the contour scale and a color value for the min of the contour scale. The routine will generate a smooth contour graduation between the two colors and assign each contour value a specific color. The color values can either be the default values listed in the WINGMODE.DAT file or they, along with the min/max contour values, can be assigned through the Fill Based, Graduated Color configuration files (CFG*). Below is an example of a Fill Based, Graduated Color configuration file.
These configuration files must follow this template & order of information. They allow comment lines preceded by an exclamation point '!' and ends with the ‘*****END-OF-DATA ***’ section.

The Min/Max values MUST be in floating-point format and exponential notation is allowed.

RGB values range from 0-255 and are separated by single spaces.

As you can see, there is a lot of flexibility but with flexibility, these things can get very involved and here is where I need your input to the following questions.

1) Is this the best way to implement these features or is there a better way to harness the power & capability of these features while keeping it easy to use & understand and do it within the confines of how WINGRIDDS works?

2) The configuration files are currently stored in the USER/ directory. Since they would probably be associated mostly with command macros, would it be better to store them in the MACROS/ directory?

Known bugs associated with third-party software (I can’t fix myself)

1) There are times when you may find that color or line contours don’t match exactly with the WINGRIDDS contours – or - contour edges may not go completely to the edge or may go beyond the edge of the display. These are issues associated with the third-party software being used to perform the color-fill graphics. The company has been made aware if the issue and I am awaiting bug fixes.
WINGRIDDs Climate Calculations

WINGRIDDs has a gridded climate database files have been improved and expanded. Where before there was a single 30-year database file for each month covering the years 1979-2009, now there are two sets of database files – a 30 year set from 1985-2015 and a 60-year set from 1955-2015. Also, each monthly file covers 4 hourly blocks during the diurnal cycle; hours 00, 06, 12 and 18. The file set for the month of April are listed as follows:

APR018500-30.CLM002
APR018506-30.CLM002
APR018512-30.CLM002
APR018518-30.CLM002
APR015500-60.CLM002
APR015506-60.CLM002
APR015512-60.CLM002
APR015518-60.CLM002

The following parameters/levels are included in each climate data file:

HGHT	10 TEMP	10 UGRD	10 VGRD	10 VTCY	10
HGHT	20 TEMP	20 UGRD	20 VGRD	20 VTCY	20
HGHT	30 TEMP	30 UGRD	30 VGRD	30 VTCY	30
HGHT	50 TEMP	50 UGRD	50 VGRD	50 VTCY	50
HGHT	70 TEMP	70 UGRD	70 VGRD	70 VTCY	70
HGHT	100 TEMP	100 UGRD	100 VGRD	100 VTCY	100
VVEL	100 HGHT	150 TEMP	150 UGRD	150 VGRD	150
VTCY	150 VVEL	150 HGHT	200 TEMP	200 UGRD	200
VGRD	200 VTCY	200 VVEL	200 HGHT	250 TEMP	250
UGRD	250 VGRD	250 VTCY	250 VVEL	250 HGHT	300
RELH	300 TEMP	300 UGRD	300 VGRD	300 VTCY	300
VVEL	300 HGHT	400 RELH	400 TEMP	400 UGRD	400
VGRD	400 VTCY	400 VVEL	400 HGHT	500 RELH	500
TEMP	500 UGRD	500 VGRD	500 VTCY	500 VVEL	500
HGHT	600 RELH	600 TEMP	600 UGRD	600 VGRD	600
VTCY	600 VVEL	600 HGHT	700 RELH	700 TEMP	700
UGRD	700 VGRD	700 VTCY	700 VVEL	700 HGHT	850
RELH	850 TEMP	850 UGRD	850 VGRD	850 VTCY	850
VVEL	850 HGHT	925 RELH	925 VVEL	925 PRES	MSL
VGRD	925 VTCY	925 VVEL	925 PRES	MSL ALAT	SFC
ALON	SFC DMAP	SFC EDIR	SFC FFFF	SFC GRDX	SFC
GRDY	SFC HGHT	SFC LFTX	SFC LIFT	SFC MSG0	SFC
MSG1	SFC PRES	SFC PWAT	SFC RELH	SFC HGHT	1000
RELH	1000 TEMP	1000 UGRD	1000 VGRD	1000 VTCY	1000
VVEL	1000 RELH	B015 TEMP	B015 UGRD	B015 VGRD	B015
UGRD	H018 VGRD	H018 UGRD	H027 VGRD	H027 UGRD	H036
VGRD	H036 PRES	MAXW TEMP	MAXW UGRD	MAXW VGRD	MAXW
RELH	S580 RELH	S720 RELH	S830 RELH	S995 TEMP	S995
RELH	S995 UGRD	S995 VGRD	S995 VVEL	S995 PRES	TROP
TEMP	TROP UGRD	TROP VGRD	TROP VSSH	TROP	
The Climate calculation commands are:

CLIMO30 [Scalar/Vector] > Display Climate value (1985-2015) of Parameter

CLIMO60 [Scalar/Vector] > Display Climate value (1955-2015) of Parameter

ANOMLY30 [Scalar/Vector] > Display the difference between parameter & 30yr Climate value

ANOMLY60 [Scalar/Vector] > Display the difference between parameter & 60yr Climate value

Examples:

To display a 30yr climatological value of TEMP,

CLIMO30 TEMP

To display a 60yr climatological anomaly value of HGHT & WIND,

ANOMLY60 HGHT / ANOMLY60 WIND

WINGRIDDS will evaluate the current data file parameters for the initialization time as well as the requested forecast hour and match those to the proper climate database file set to compare to.

These database files have been created from the “NCEP/NCAR Global Reanalysis Products, 1948-continuing” file set.
WINGRDDS Observation Data Operations

This is to document the new observation data processing and display features within WINGRDDS.

WINGRDDS can handle ASCII (TEXT) based surface observations (METAR, Synoptic, Buoy, & Ship) reports and Upper-Air RAOB reports as well as some observation-based BUFR format files. The observation ingest utility OBS2PCG.EXE parses the observation reports, performs Barnes Analysis on the data and map the data to a specific map projection to create a PCG Data file which is compatible with the GRIB-based PCG data files so the observation and model data can be viewed in the same context. Also, the OBS2PCG utility creates a concatenated text file of all surface and upper-air observations to be used to create Station Model Plots within WINGRDDS.

***** NOTE: If you are not aware of how Barnes Analysis works, it is basically trying to arrange random scattered data (observation stations) into orderly, fixed-spaced data (grid data) and the more observations spread across the selected grid area there are, the better and more accurate the resulting Barnes analysis will be. It is not recommended, for example, that, in order to save time, you only download some coastal marine or buoy data and expect a Barnes analysis on a grid covering the entire U.S. to work because there is a big data hole covering the entire interior of the U.S. and the Barnes routines do not like big holes of nothing.

As stated above, OBS2PCG can now process some observation-based BUFR format files. It must be noted these are ‘observation’ BUFR files and **NOT** GRIB forecast-based BUFR files which cannot be processed. In case you are not familiar, a single GRIB-based message contains data which covers a broad area of the earth however, the BUFR format contains data for a single point on the earth and this can be an observation data point or a forecast data point. A single BUFR file can contain thousands of single-point data records.

OBS2PCG can only process observation-based BUFR data files and there are also some observation BUFR files it cannot decode due to processing limitations. Below is a list of the base file names used on the NCEP servers which OBS2PCG can decode (“?” denotes incomplete description info):

Surface Observations -
- metars.buf METAR-based obs
- adpsfc.buf Synoptic-based obs (?)
- sfcsph.buf Surface Ship obs
- marine.buf Surface ship/buoy obs (?)

Upper-Air/non-surface Observations -
- vadwnd.buf NEXRAD VAD winds
- proflr.buf Profiler Winds
- adpupa.buf RAOBs
- satwnd.buf Satellite-based wind obs (over ocean)
- qkswnd.buf Quicksat surface radar winds (over ocean)
- qkscat.buf QuickScat surface radar winds (over ocean)
- goesfv.buf Processed GOES-based Satellite Sounder obs
- atovs.buf Processed Polar-based Satellite Sounder obs
Below is a list of the base file names used on the NCEP servers which OBS2PCG can *NOT* decode:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>trmm.buf</td>
<td>Rain Rate obs (over ocean)</td>
</tr>
<tr>
<td>wnsdsat.buf</td>
<td>WindSat obs – dead platform</td>
</tr>
<tr>
<td>gspro.buf</td>
<td>CHAMP radio occultation data</td>
</tr>
<tr>
<td>geoimr.buf</td>
<td>Processed GOES Imager Tb data</td>
</tr>
<tr>
<td>prepbufr.buf</td>
<td>unknown format issues</td>
</tr>
<tr>
<td>rassda.bufr</td>
<td>raw HIRS-1 1b format</td>
</tr>
<tr>
<td>1bamua.bufr</td>
<td>raw amsu-a 1b format</td>
</tr>
<tr>
<td>1bamub.bufr</td>
<td>raw amsu-b 1b format</td>
</tr>
<tr>
<td>1bhrs3.buf</td>
<td>raw hirs-3 1b format</td>
</tr>
<tr>
<td>1bhrs4.buf</td>
<td>raw hirs-4 1b format</td>
</tr>
<tr>
<td>1bmhs.buf</td>
<td>raw MHS Tb data (NOAA-18, METOP-2)</td>
</tr>
<tr>
<td>airsev.buf</td>
<td>raw AIRS/AMSU-A/HSB 1b DATA (AQUA)</td>
</tr>
<tr>
<td>amsre.buf</td>
<td>raw AMSRE-E Channel data</td>
</tr>
<tr>
<td>mtiasi.buf</td>
<td>unknown data</td>
</tr>
<tr>
<td>osbuv8.buf</td>
<td>unknown data</td>
</tr>
<tr>
<td>sptgrmm.buf</td>
<td>unknown data – possible TRMM as above.</td>
</tr>
<tr>
<td>aircft.buf</td>
<td>AIRCAR (Commercial aircraft) obs (?)</td>
</tr>
</tbody>
</table>

The BUFR data processing can be combined with the regular text-based obs files to improve the Barnes Analysis and final data output. *HOWEVER*, it was found during testing the text-based surface data was more complete as compared to the BUFR data and it is not advised to mix the two observation types together. It was found that the best final product used text-based surface obs combined with BUFR-based non-surface obs. It must also be noted that the GOES & Polar Processed Sounding files are very large and may take a long time to download & process – depending on your internet and computer CPU speed.

When downloading BUFR data files onto your PC, the surface-based files can be transferred to their appropriate “OBS\Surface” subdirectories within WINGRIDDS i.e.: metars.buf – type files can go into the METAR directory, sfcshp.buf – type files can go into the Ship directory, etc. However, due to the different way the text-based RAOB obs are processed, it was required that a BUFR directory be created under the “OBS\UpperAir” directory and *ALL* non-surface BUFR files need to be stored for processing within this directory...even the adpupa.buf – type RAOB BUFR files.

New additions have been added to the WINGMODE.DAT file, new directories have been created to accommodate the observation reports, a new dialog has been added to WINGRIDDS for the user to interface to the OBS2PCG utility, download scripts have been added to download observation data from known free Internet servers and a few new commands have been added to WINGRIDDS.

Observation Data Ingesting with OBS2PCG

The new utility OBS2PCG has been created to 1) convert individual observation reports to a PCG Data file format so observation data can be viewed in conjunction with model data and 2) concatenate the observation data into one text-based data file do build and plot station-model data now as well as skew-t and hodographs in later releases.

Since surface observation data is usually reported every hour and RAOB data is only twice a day (00Z & 12Z), OBS2PCG has the ability to combine surface and upper-air data from different times. Either surface only, upper-air only or both data sets can be processed.
The data must be conformed to a specific map projection to work within WINGRIDDS. The user can select most any map projection listed in the GRIB documentation (except Arakawa [staggered] grids or grids with irregular grid spacing [N/S spacing different from E/W spacing]) or the user can select one or more of the WAFS octants in the same way as is used with the WAFS GRIB Ingest utility GRIB2PCG32.

When an observation hour is selected, OBS2PCG filters the data and only allows observations centered at that hour +/- 15 min and once a station is processed, it will not process that station again if it is reported more than once.

Observation Data Ingesting with OBS2PCG (Command Line)

The command-line entry for OBS2PCG is as follows:

OBS2PCG Ddd Shh Uhh Nggg Woooooooo R

OBS2PCG - name of the utility
Ddd - the letter ‘D’ 2-digit day of the month
Shh - the letter ‘S’ 2-digit hour of surface report (UTC)
Uhh - the letter ‘U’ 2-digit hour of upper-air report (UTC)

Either:
Nggg - the letter ‘N’ 3-digit grid ID from GRIB documentation
or
Woooooooo - the letter ‘W’ up to 8-letters (I-P) identifying the WAFS octant(s) the user wishes to use.

Optional:
R - the letter ‘R’ used to reanalyze the processed data to account for modified or corrected data or to perform a Barnes analysis to a different grid type on data which has already been processed
Below is the dialog from within WINGRIDDS to accomplish the same thing:

Observation Data Ingesting with OBS2PCG from within WINGRIDDS

When the user selects the WINGRIDDS menu selection: Convert Observation Files under the Files menu, the dialog Convert Observation Data, as seen above, is shown on the screen.

Observation Date-Time Group Information

The Date-Time Group section will be filled with the numeric day of the month and hours of Surface and Upper-Air Observations. The information will default to local time adjusted to GMT (Zulu) through the hour offset setting on line 2 in the file FTPCMD.DAT.
NOTICE***** If your computer is set to observe Daylight Savings Time, this GMT offset entry in the FTPCMD.DAT file will have to be modified by one hour when switching between Standard Time and Daylight Savings Time for any download and processing to be time accurate.

Observation Grid Information

The user can select one of two types of grids to map the observation data; NWS-standard grids or WAFS-standard grids. These grid areal coverage and resolution are described in the GRIB1 documentation included in the WINGRIDDS Help section. The user can select most any map projection listed in the GRIB documentation except Arakawa (staggered) grids or grids with irregular grid spacing (N/S spacing different from E/W spacing).

The **NWS Grid ID** default value is selected by entry line 16 of the USER\WINGMODE.DAT file. The user can change the value of the NWS Grid ID by either directly typing in the right-justified number or scrolling the values higher or lower with the up-down arrow buttons.

The **WAFS Grid ID** is a combination of anywhere from 1 to 8 of the WAFS octant letter IDs from I to P. The octant letter ID’s **MUST** be entered in the following, specific order for processing to perform properly. If more than one octant is to be listed, the following rules must be followed:

1 – if more than one octant in the same N/S hemisphere is to be used, the octants must be listed from west to east.

2 – if more than one octant in different N/S hemispheres is to be used, the octants must be listed from most southwest octant, progressing east, then doing the same in the northern hemisphere ending with the most northeast octant.

The **CUSTOM Grid ID** is a file name of a Custom Grid defined and saved during the Custom Grid definition operation. (see p.109)

Observation Reanalyze Information

The user can select the Reanalyze option to map a set of observation data which had previously been processed and the user has corrected for some bad data or the user wishes to have a barnes analysis performed on an observation data set and mapped to a different grid projection. The Reanalysis option makes the OBS2PCG utility skip over the initial raw data conversion and works, instead, from the text-based combined observation data files located in the GRIBDATA\OBS directory. The files here are text-based and can be edited with simple text editors. The combined observation data file formats are covered below.
Observation PCG Data File Names

The PCG data files created from OBS2PCG have a unique name convention to convey the data that was processed. The following are examples:

OCT2007S12U12.OBS211

This file name breaks down as follows:
- **OCT** - Month of file creation
- **20** - Day of the month of data
- **07** - 2-digit year (2007)
- **S12** - Surface data for 12Z report
- **U12** - Upper-Air data for 12Z report
- **OBS** - Identifying as Observation Data
- **211** - Grid ID which data is mapped to

OCT2007S12.OBSPL

Which breaks down as follows:
- **OCT** - Month of file creation
- **20** - Day of the month of data
- **07** - 2-digit year (2007)
- **S12** - Surface data for 12Z report
- **OBS** - Identifying as Observation Data
- **PL** - WAFS Octants which data is mapped to

Combined Observation Data File Names

A directory called OBS is located off the GRIDDATA directory and holds the combined observation data in text format to be read for plotting surface and upper-air station models. Using the previous PCG Data file name examples, if the OCT2007S12U12.OBS211 file is created in the GRIDDATA directory, there will also be a corresponding OCT2007S12U12.DAT file in the GRIDDATA\OBS directory. Also, if the OCT2007S12.OBSPL file is created, then OCT2007S12.DAT will be created in the GRIDDATA\OBS directory as well. These files can be edited with a simple text editor to correct for unreasonable or incorrect data which causes the Barnes Analysis to plot incorrect data. It is best, if incorrect data is found for a specific reporting station, to replace the bad value with value of -9999.00 which indicates MISSING data and will be ignored upon reanalysis.

Surface Data -

The following is an example surface data entry in the Combined Observation data file. Notice that the data are in specific positions and must remain that way when edited if it is to be read properly.

```
1111-22222-33333333-4444444-55555555-66666666-77777777-88888888-99999999
KCLT 72314 35.22 -80.93 234.00 14.40 13.30 29.91 1012.88
11111111-2222222-33333333-44444444-55555555-66666666-77777777-88888888
1012.88 320.00 2.57 985.09 1025.00 4.00 1.00 9.00
```
Line 1:
1) KCLT – ICAO Station ID (4 digits)
2) 72314 - WMO Station ID (5 digits)
3) 35.22 - Latitude (8 digits)
4) -80.93 - Longitude (8 digits)
5) 234.00 - Elevation in meters (8 digits)
6) 14.40 - Temperature Celsius (8 digits)
7) 13.30 - Dew Point Celsius (8 digits)
8) 29.91 - Altimeter in Inches (8 digits)
9) 1012.88 - Altimeter in Millibars (8 digits)

Line 2:
1) 1012.88 – Sea Level Pressure in Millibars (8 digits)
2) 320.00 - Wind Direction (8 digits)
3) 2.57 - Wind Speed (Meters/Second) (8 digits)
4) 985.09 - Station Pressure in Millibars (8 digits)
5) 1025.00 - Station Pressure Trend/Change (encoded) (8 digits)
6) 4.00 - Sky Cover (encoded) (8 digits)
7) 1.00 - Past Weather (encoded) (8 digits)
8) 9.00 - Present Weather (encoded) (8 digits)

Upper-Air Data -
The following is an example upper-air data entry in the Combined Observation data file. The data in this section are of a different format due to the volume of data need to be listed. The data are broken down into 3 sections: Station ID/Location, TTAA (all data from mandatory levels), TTBB (Pressure levels of significant Temp/Dewpoint) and PPBB (Height levels of significant Wind Direction/Speed). TTBB and PPBB entries do not have a fix number so there can be quite a few. Notice that the data are in specific positions and must remain that way when edited if it is to be read properly.

KWAL 72402
37.93 -75.48 41.00
TTAA

13
64. 1006.00 41.00 17.40 15.90 330.00 1.03
32. 1000.00 64.00 19.00 14.10 345.00 2.06
32. 925.00 734.00 16.20 7.20 320.00 4.63
32. 850.00 1446.00 11.00 5.00 245.00 5.66
32. 700.00 3051.00 5.40 -22.60 235.00 28.31
32. 500.00 5720.00 -9.50 -25.50 220.00 41.70
32. 400.00 7420.00 -17.10 -22.10 220.00 49.94
32. 300.00 9520.00 -31.30 -55.30 230.00 53.02
32. 250.00 10790.00 -40.30 -72.30 230.00 47.88
32. 200.00 12270.00 -52.70 -80.70 225.00 48.39
32. 150.00 14080.00 -63.50 -87.50 245.00 40.15
32. 100.00 16540.00 -68.70 -90.70 240.00 16.47
8. 306.00 -9999.00 -9999.00 -9999.00 225.00 53.54

TTBB

3
64. 1006.00 41.00 17.40 15.90 -9999.00 -9999.00
4. 996.00 -9999.00 19.80 12.80 -9999.00 -9999.00
4. 967.00 -9999.00 19.40 9.40 -9999.00 -9999.00
Line 1: Station ID (ICAO & WMO)
Line 2: Lat, Lon, Elevation
Line 3: Section ID
Line 4: Number of entries in section

Section Entries:

111----2222222-33333333-44444444-55555555-66666666-77777777
64. 1006.00 41.00 17.40 15.90 330.00 1.03

1) 64. - Entry ID (3 digits)
 64 = Surface
 32 = Mandatory Pressure Level
 8 = Tropopause
 4 = Significant Temp/Dewpoint
 2 = Significant Wind Direction/Speed (M/S)

2) 1006.00 - Pressure Level in Millibars (8 digits)
3) 41.00 - Pressure Height Trend/Change (encoded) (8 digits)
4) 17.40 - Temperature Celsius (8 digits)
5) 15.90 - Dew Point Celsius (8 digits)
6) 330.00 - Wind Direction (8 digits)
7) 1.03 - Wind Speed (Meters/Second) (8 digits)

With the many additional observation data sources added in the BUFR capability, the resulting Obs Text data file, which is stored in the WINGRIDDS\GRIDDATA\OBS directory, has become much larger and new data separators are needed to separate the different observation types. As before, the string "**** 99999 - 9999.99…" is written to show then end of surface obs & the start of RAOB observations. At the end of any RAOB obs though, the new BUFR data is added – each observation type within its own section. The next data separators are written as:

"**** 11111 -9999.99 ...” QKSAT Surface Wind observations.
"**** 22222 -9999.99 ...” NEXRAD VAD/Profiler observations.
"**** 44444 -9999.99 ...” Satellite Wind observations.
"**** 55555 -9999.99 ...” Satellite Sounding observations.

The data collected & concatenated within the Obs Text data file are different, depending on the platform type which reported, thus the different data sections. Below are short examples of the different data types with short explanations of the contents for each.

Surface QKSAT obs are listed on a single line with the standard “WNDSAT” label observation ID, Lat/Lon, Wind Direction/Wind Speed entries as follows:

WNDSAT 0000001W 56.68 154.10 259.00 2.80
WNDSAT 0000002W 56.69 154.32 270.00 3.00
WNDSAT 0000003W 56.71 154.53 258.00 3.30
NEXRAD VAD/Profiler entries are in a similar format to the RAOB entries with Mandatory Level and Significant Level sections. However, Temperature & Dewpoint entries are always missing and only Wind Speed/Wind Direction are listed. Each observation has a standard “VADPRF” label.

<table>
<thead>
<tr>
<th>層次</th>
<th>Pressure (hPa)</th>
<th>Temperature (°C)</th>
<th>Dewpoint (°C)</th>
<th>Wind Speed</th>
<th>Wind Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>VADPRF 701</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.50</td>
<td>259.00</td>
<td></td>
<td></td>
<td>96.00</td>
<td>4.00</td>
</tr>
<tr>
<td>12.00</td>
<td>982.00</td>
<td>1009.00</td>
<td>259.00</td>
<td>157.00</td>
<td>4.00</td>
</tr>
<tr>
<td>32.00</td>
<td>925.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
<td>190.00</td>
<td>9.00</td>
</tr>
<tr>
<td>32.00</td>
<td>850.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
<td>96.00</td>
<td>4.00</td>
</tr>
<tr>
<td>32.00</td>
<td>700.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
<td>108.00</td>
<td>1.00</td>
</tr>
<tr>
<td>32.00</td>
<td>500.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
<td>157.00</td>
<td>4.00</td>
</tr>
<tr>
<td>32.00</td>
<td>400.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
<td>190.00</td>
<td>9.00</td>
</tr>
<tr>
<td>32.00</td>
<td>300.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
<td>196.00</td>
<td>14.00</td>
</tr>
<tr>
<td>32.00</td>
<td>250.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
<td>195.00</td>
<td>15.00</td>
</tr>
<tr>
<td>32.00</td>
<td>200.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
<td>189.00</td>
<td>8.00</td>
</tr>
<tr>
<td>32.00</td>
<td>150.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
</tr>
<tr>
<td>32.00</td>
<td>100.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
<td>-9999.00</td>
</tr>
<tr>
<td>27.00</td>
<td>982.00</td>
<td>1009.00</td>
<td>259.00</td>
<td>106.00</td>
<td>5.80</td>
</tr>
<tr>
<td>4.00</td>
<td>898.00</td>
<td>1009.00</td>
<td>-9999.00</td>
<td>197.00</td>
<td>4.80</td>
</tr>
<tr>
<td>4.00</td>
<td>871.00</td>
<td>1259.00</td>
<td>-9999.00</td>
<td>119.00</td>
<td>2.80</td>
</tr>
<tr>
<td>4.00</td>
<td>844.00</td>
<td>1509.00</td>
<td>-9999.00</td>
<td>128.00</td>
<td>2.90</td>
</tr>
<tr>
<td>4.00</td>
<td>819.00</td>
<td>1759.00</td>
<td>-9999.00</td>
<td>130.00</td>
<td>1.30</td>
</tr>
<tr>
<td>4.00</td>
<td>794.00</td>
<td>2009.00</td>
<td>-9999.00</td>
<td>100.00</td>
<td>5.50</td>
</tr>
<tr>
<td>4.00</td>
<td>770.00</td>
<td>2259.00</td>
<td>-9999.00</td>
<td>106.00</td>
<td>5.80</td>
</tr>
<tr>
<td>4.00</td>
<td>746.00</td>
<td>2509.00</td>
<td>-9999.00</td>
<td>85.00</td>
<td>2.60</td>
</tr>
<tr>
<td>4.00</td>
<td>723.00</td>
<td>2759.00</td>
<td>-9999.00</td>
<td>35.00</td>
<td>1.50</td>
</tr>
<tr>
<td>4.00</td>
<td>700.00</td>
<td>3009.00</td>
<td>-9999.00</td>
<td>4.00</td>
<td>1.40</td>
</tr>
<tr>
<td>4.00</td>
<td>678.00</td>
<td>3259.00</td>
<td>-9999.00</td>
<td>112.00</td>
<td>2.10</td>
</tr>
<tr>
<td>4.00</td>
<td>656.00</td>
<td>3509.00</td>
<td>-9999.00</td>
<td>138.00</td>
<td>2.20</td>
</tr>
<tr>
<td>4.00</td>
<td>634.00</td>
<td>3759.00</td>
<td>-9999.00</td>
<td>206.00</td>
<td>11.70</td>
</tr>
<tr>
<td>4.00</td>
<td>612.00</td>
<td>4009.00</td>
<td>-9999.00</td>
<td>200.00</td>
<td>11.90</td>
</tr>
<tr>
<td>4.00</td>
<td>590.00</td>
<td>4259.00</td>
<td>-9999.00</td>
<td>108.00</td>
<td>1.00</td>
</tr>
<tr>
<td>4.00</td>
<td>568.00</td>
<td>4509.00</td>
<td>-9999.00</td>
<td>128.00</td>
<td>2.90</td>
</tr>
<tr>
<td>4.00</td>
<td>546.00</td>
<td>4759.00</td>
<td>-9999.00</td>
<td>198.00</td>
<td>12.50</td>
</tr>
<tr>
<td>4.00</td>
<td>524.00</td>
<td>5009.00</td>
<td>-9999.00</td>
<td>199.00</td>
<td>14.10</td>
</tr>
<tr>
<td>4.00</td>
<td>502.00</td>
<td>5259.00</td>
<td>-9999.00</td>
<td>198.00</td>
<td>14.70</td>
</tr>
<tr>
<td>4.00</td>
<td>480.00</td>
<td>5509.00</td>
<td>-9999.00</td>
<td>195.00</td>
<td>15.10</td>
</tr>
<tr>
<td>4.00</td>
<td>458.00</td>
<td>5759.00</td>
<td>-9999.00</td>
<td>196.00</td>
<td>15.20</td>
</tr>
<tr>
<td>4.00</td>
<td>436.00</td>
<td>6009.00</td>
<td>-9999.00</td>
<td>198.00</td>
<td>13.00</td>
</tr>
<tr>
<td>4.00</td>
<td>414.00</td>
<td>6259.00</td>
<td>-9999.00</td>
<td>197.00</td>
<td>13.50</td>
</tr>
<tr>
<td>4.00</td>
<td>392.00</td>
<td>6509.00</td>
<td>-9999.00</td>
<td>197.00</td>
<td>13.50</td>
</tr>
<tr>
<td>4.00</td>
<td>370.00</td>
<td>6759.00</td>
<td>-9999.00</td>
<td>199.00</td>
<td>10.60</td>
</tr>
<tr>
<td>4.00</td>
<td>348.00</td>
<td>7009.00</td>
<td>-9999.00</td>
<td>191.00</td>
<td>9.00</td>
</tr>
<tr>
<td>4.00</td>
<td>326.00</td>
<td>7259.00</td>
<td>-9999.00</td>
<td>153.00</td>
<td>5.20</td>
</tr>
<tr>
<td>4.00</td>
<td>304.00</td>
<td>7509.00</td>
<td>-9999.00</td>
<td>159.00</td>
<td>4.40</td>
</tr>
</tbody>
</table>
Next, Satellite Cloud-Track Winds have single-line entries the standard “SATWD” label observation ID, Lat/Lon, Pressure Level, Height, Temperature, Dewpoint (always ‘Missing’), Wind Direction/Wind Speed entries as follows:

SATWD C100002I 47.45 34.84 400.00 7184.37 -35.67 -9999.00 190.00 19.20
SATWD C100003I 47.40 34.65 400.00 7184.37 -35.27 -9999.00 190.00 20.40
SATWD C100004I 47.53 32.53 400.00 7184.37 -34.01 -9999.00 210.00 24.40
SATWD C100005I 47.23 31.63 300.00 9163.38 -45.81 -9999.00 214.00 24.30
SATWD C100006I 46.67 33.50 500.00 5567.28 -18.54 -9999.00 205.00 25.60

Finally, Satellite Sounding section is formatted similar to the RAOB entries with Mandatory Level and Significant Level sections. However, Wind Speed/Wind Direction entries are always missing and only Temperature & Dewpoint are listed. Each observation has a standard “SATSND” label and there is no differentiation between a polar satellite sounding obs and a geostationary satellite sounding obs.

SATSND = 806561
 -38.49 61.95 0.00
 12
 64. 1019.90 0.00 15.44 -9999.00
 32. 1000.00 88.66 18.84 13.38
 32. 925.00 298.70 14.94 9.78
 32. 850.00 662.09 10.67 6.50
 32. 700.00 880.94 3.09 -4.68
 32. 500.00 1012.20 -12.34 -21.11
 32. 400.00 532.43 -23.37 -32.04
 32. 300.00 1074.77 -39.23 -45.48
 32. 250.00 998.60 -132.86 -146.61
 32. 200.00 894.78 -139.48 -152.00
 32. 150.00 1117.29 -141.48 -153.63
 32. 100.00 531.31 -143.60 -155.38
 21
 64. 1019.90 0.00 15.44 -9999.00
 4. 950.00 436.55 16.35 10.96
 4. 920.00 271.13 14.65 9.54
 4. 780.00 709.17 6.81 0.60
 4. 670.00 352.97 1.18 -7.83
 4. 620.00 618.56 -2.56 -12.50
 4. 570.00 661.58 -6.16 -16.52
 4. 475.00 389.71 -14.86 -22.03
 4. 430.00 745.15 -19.93 -26.90
 4. 350.00 962.00 -30.71 -38.90
 4. 135.00 405.54 -141.85 -153.94
 4. 115.00 613.65 -142.98 -154.86
 4. 85.00 616.63 -143.48 -155.27
 4. 70.00 739.33 -142.66 -154.61
 4. 60.00 592.35 -141.10 -153.32
 4. 50.00 707.43 -140.10 -152.51
Editing Combined Observation Files

If, after the observation data has been processed and you view the Observation PCG data file and you see suspicious data effects (contour ‘bulls-eyes’ to unrealistic values), you can use the STID command to find the station ID at or near the bulls-eye center or plot the station model(s) for that area to find the suspect station. Then, open the combined observation data file with a text editor and search for that station ID with the suspect data value you saw. WINGRIDDS now has its’ own text editor which will automatically open the current observation data file when executed. This editor is located within the ‘Convert Observation Data’ dialog. See below:

Once the station is found, and the suspect data value is seen, you can either enter a known good value or change the value to -9999.00 to denote “missing” data. Then, from within the ‘Convert Observation Data’ dialog, select the same Time & Grid parameters which match the observation data file that was edited and also, select the ‘Reanalyze Edited Observation Data’ section or, from the Windows Command Line, run OBS2PCG utility with the same parameters and add the ‘R’ flag at the end. The Combined Observation data file will be rescanned to perform a new Barnes Analysis on all of the data and a new PCG data file will replace the one with the bad data.
When an observation data file is opened within WINGRIDDS and it is determined the contents need to be edited, follow these simple steps:

1) On the WINGRIDDS Plan display, locate the geographic area where the spurious data bulls-eye is located and note the parameter which is displayed (TEMP, HGHT, etc.)
2) Type the command ‘STID’ to show the reporting stations and find the station IDs in the area of the bad data.
3) Open the ‘Convert Observation Data’ dialog and click the ‘Edit’ button to open the Observation Data Editor (see below).
4) Perform a search for the station ID. Refer to the WINGRIDDS documentation for the data layout of the observation data file.
5) Once the station is found and the data value is seen, either correct the data value or replace the value with the ‘missing’ value of -9999.
6) Save the file and, from within the ‘Convert Observation Data’ dialog, check the ‘Reanalyze’ button and reprocess the observation data with the corrected data value and the data bulls-eye should be gone.

---Station Model Plot Color Control

Below is an example of a surface station model plot:

Surface Station Parameters:
1 SKY COVERAGE SYMBOL
2 TEMPERATURE
3 CURRENT WEATHER SYMBOL
4 PRESSURE
5 PRESSURE TREND
6 DEW POINT
7 PAST WEATHER SYMBOL
8 WIND

Below is an example of an upper-air (500mb) station model plot:

Upper-Air Station Parameters:
1 SKY COVERAGE SYMBOL (ALWAYS CLEAR)
2 TEMPERATURE
4 PRESSURE LEVEL HEIGHT
6 DEW POINT
8 WIND
Station parameter location:

```
8  2  4
3  1  5
6  7
```

Each parameter can be assigned a unique color based on selection from within the ‘Properties’ dialog which is covered in ‘Customizing WINGRDDS’ section.

Plotting Station Model Data

The STWX command has been added for plotting station model data and it is only available to plot data when an observation data file is open. Station plots are governed by the FULG and NRMG flags which control data thinning on the display. If normal data thinning is in effect through the use of the NRMG flag (default), the station model plotting routine filters the station model plot display so that there are no stations over-writing each other. This is accomplished by selecting stations to plot by reading a new station list file called STNID-PRIME.DAT in the DATA directory. This file is a list of the preferred stations to plot. It is in the same format as STNID.DAT. The plot routine reads down the list and plots any station which is in the field of view of the display and observation data is available to plot. When the plot routine reads a station from the list and it finds data from that station to plot, it checks to see if the station to plot does not interfere with any previously plotted stations. Priority is given on a first-come, first-served basis. After the stations in the STNID-PRIME.DAT have been processed, the plot routine reads through the rest of the observation data file to plot any remaining station in the field of view of the display checking they do not overlap any previous station plots. Therefore, the wider the areal coverage of the display, the fewer stations which will be plotted. As the display is zoomed in, more stations will fill in the areas. To allow all stations to be plotted, first select the FULG command. If the level selected is not SFC, the plot routine will search for any upper-air reports and plot the station model if data is found for that level. A full list of station symbols are listed Appendix C.

WINGRDDS Observation Commands

The following commands have been added to WINGRDDS for the Observation data:

- **STWX** – Plots the station model on the screen for the level selected
- **STID** – Plots station ID information (WMO or ICAO) at the geographic location.

This Tool Bar button will be enabled whenever an observation data file is selected. When pressed, it executes the ‘STWX’ command.
Diagnostic Functions –

**- Diagnostic Functions - Background and Philosophy -

The ability to calculate and combine a variety of quantities derived from the grid point data greatly enhances the diagnostic capabilities of the system. The diagnostics are expressed in functional form, in that a function name is an ordered set of arguments, optionally enclosed in parentheses or brackets and separated by commas.

As an illustration, advection is expressed as the function ADVT followed by a Scalar quantity and a Wind Type. As such, the Temperature Advection field should be thought of as "ADVecTion of the TEMPerature by the Total WIND" and correspondingly requested using the sequence ADVT(TEMP,WIND). Similarly, the ageostrophic component of the Moisture Advection is expressed as "ADVecTion of the MIXing Ratio by the AGEOstropic wind" and requested by ADVT(MIXR,AGEO). Here, both the Mixing Ratio and Ageostrophic Wind are derived automatically.

Functional calls can also be chained together. For example, Vorticity Advection is thought of as "Advection of the Vorticity of the Total Wind by the Total Wind." As such, the functional request becomes ADVT[VORT(WIND),WIND].

For clarity, either parentheses - (and) - or brackets - [and] - can, as an option, be used to group the function arguments.

**- Available Diagnostic Functions -

See the Appendix or the Command Help option for full listing of available commands.

Some frequently used functions, include:

- **SSUM** [2 Scalars] > Calculates Scalar grid sum
- **SAVR** [2 Scalars] > Calculates Scalar grid average
- **SDIF** [2 Scalars] > Calculates Scalar grid difference
- **STND** [2 Scalars] > Calculates Scalar grid time tendency
- **SMLT** [2 Scalars] > Multiplies two Scalar fields
- **SDVD** [2 Scalars] > Divides two Scalar fields
- **SADC** [4 digit value] > Sum of Scalar & specified constant
- **SSBC** [4 digit value] > Difference of Scalar & specified constant
- **SMLC** [4 digit value] > Multiplies Scalar by specified constant
- **SDVC** [4 digit value] > Divides Scalar by specified constant
- **INVS** [Scalar] > Finds INVerSe of a Scalar
- **INV1** [Scalar] > Finds INVerse of a Scalar with max. of 1
- **ABSV** [Scalar] > Calculates ABSolute Value of Scalar grid
- **SINE** [Scalar] > Calculates the SINE of Scalar grid (e.g., WDRC)
- **COSN** [Scalar] > Calculates the COSiNe of Scalar grid (e.g., WDRC)
- **TNGT** [Scalar] > Calculates the TaNGenT of Scalar grid (e.g., WDRC)
- **SNEG!** [Scalar] > Finds the NEGative of a Scalar grid
- **DSDX** [Scalar] > Calculates X gradient of Scalar
- **DSDY** [Scalar] > Calculates Y gradient of Scalar
- **MGRD** [Scalar] > Magnitude of the GRaDient of a Scalar field
- **GRAD** [Scalar] > Finds the GRADient of a Scalar field
- **NGRD** [Scalar] > Finds the Negative GRaDient of a Scalar field
- **MGRD** [Scalar] > Magnitude of the GRaDient of a Scalar field
VADC [4 digit value] > Sum of Vector & specified constant
VSBC [4 digit value] > Difference of Vector & specified constant
VMLC [4 digit value] > Multiplies Vector by specified constant
VDVC [4 digit value] > Divides Vector by specified constant
VNEG! [Vector] > Finds the NEGative of a Vector field
VSUM [Vectors] > Calculates the Vector sum
VAVR [Vectors] > Calculates the Vector average
VDIF [Vectors] > Calculates the Vector difference
VTND [Vectors] > Calculates the Vector time tendency
VMLT [Vectors] > Multiplies two Vectors by components
DOTP [Vectors] > Calculates the DOT Product of 2 Vectors
CRSP [Vectors] > Calculates the CRoSSs Product of two Vectors
VDVD [Vectors] > Divides two Vectors by components

VKNT [Vector] > Converts a Vector from m/s to KNoTs
VMPH [Vector] > Converts a Vector from m/s to MPH
VKPH [Vector] > Converts a Vector from m/s to KPH
MAGN [Vector] > Calculates MAGNitude of a Vector
SKNT [Scalar] > Converts a Scalar (e.g., WSPD) from m/s to KNOTs
SMPH [Scalar] > Converts a Scalar (e.g., WSPD) from m/s to MPH
SKPH [Scalar] > Converts a Scalar (e.g., WSPD) from m/s to KPH

ISAL > Computes the Isallobaric Wind
INAD > Computes the Inertial Advective Wind
JCBN [2 Scalars] > Computes the Jacobian determinate of two scalars
FRTG [wind Vector] > Computes Frontogenesis of the wind
DFCP [vector] > Calculate the Deformation components
 (X COMP, Y COMP) of any vector
FVCT > Calculates F (Normal wind) Vectors
QVCT > Calculates Q (Geostrophic wind) Vectors
THTS > Calculates Saturated Theta-e

ADVT [Scalar and Vector] > Calculates advection
DVRG [Vector] > Calculates divergence
FLUX [Scalar & Vector] > Produces a flux Vector
SDVR [Scalar and Vector] > Calculates flux divergence
RVRT [Vector] > Calculates relative vorticity
VORT [Vector] > Calculates absolute vorticity
IPVO > Isentropic Potential Vorticity calculated between LVL1 and LVL2
when LVL1 and LVL2 are set to Theta levels.
IPVA > Isentropic Potential Vorticity Advection calculated between LVL1 and LVL2
when LVL1 and LVL2 are set to Theta levels.
PVT A > Isobaric Potential Vorticity (Theta) calculated between LVL1 and LVL2
when LVL1 and LVL2 are set to pressure levels.
PVTE > Isobaric Potential Vorticity (Theta-E) calculated between LVL1 and LVL2
when LVL1 and LVL2 are set to pressure levels.
PVTS > Isobaric Potential Vorticity (Theta-S) calculated between LVL1 and LVL2 when LVL1 and LVL2 are set to pressure levels.
PVAA > Isobaric Potential Vorticity (Theta) Advection calculated between LVL1 and LVL2 when LVL1 and LVL2 are set to pressure levels.
PVEA > Isobaric Potential Vorticity (Theta-E) Advection calculated between LVL1 and LVL2 when LVL1 and LVL2 are set to pressure levels.
PVSA > Isobaric Potential Vorticity (Theta-S) Advection calculated between LVL1 and LVL2 when LVL1 and LVL2 are set to pressure levels.
PVN > potential vorticity (m**2/kg/s)
PVU > potential vorticity (10**-6*K*m**2/kg/s)

SPENT > specific entropy (J/K/kg)

SMTH > Applies a binomial smoother to the active Scalar gridded data
VSMT > Applies a binomial smoother to the active Vector gridded data

ZPOS > Sets all positive values to zero
ZNEG > Sets all negative values to zero
RLTN [4 digit value] > Replaces values Less Than with that value
RGTN [4 digit value] > Replaces values Greater Than with value

**- Diagnostic Functions - Cross Section Specific:
XREL [Vector] > Rotates Vector from earth to cross sector relative
TANG [Vector] > Finds cross-section relative tangential component
VTNG [Vector] > Plots cross-section relative tangential component
VCRC [Vector] > Plots VTNG & VVEL
VCR2 [Vector] > Plots VTNG & VVEL scaled by 2
VCR5 [Vector] > Plots VTNG & VVEL scaled by 5
NORM [Vector] > Finds cross-section relative normal component
VNRM [Vector] > Plots cross-section relative normal component

**- Examples of Diagnostic Functions -
Some sample diagnostic command sequences include:

MAGN(WIND) - will calculate and display isotachs of the MAGNitude of the total WIND.
SDIF(MIXR,SMIX) - will produce the difference between the true and Saturation MIXing Ratios --- the saturation deficit.
ADVT[TEMP,WIND] - will produce the TEMPerature ADVecTion field using the total WIND, - Note brackets/parens are interchangeable.
ADVT TEMP GEOS - will produce the TEMPerature ADVecTion field using the GEOStrophic wind, - Note brackets can be omitted
ADVT(PRES,WIND) S982 - will set the default level to the bottom sigma level of the NGM and calculate the ADVecTion of PRESsure on a Sigma surface by the WIND, a measure of the orographic vertical motion
- Shorthand specifications and Commonly Used Diagnostic Functions -

For simplicity, frequently used sequences of commands can be grouped together and given a 4 character ALIAS name. These alias names can be used in exactly the same fashion as all other WINGRIDDS commands, with the difference that they are completely user defined in the file **USER\ALIAS.DAT**.

Some predefined systems aliased diagnostic commands include,

WSPD > Generates isotachs for the Total wind

WVRT > Generates vorticity of the Total wind

GVRT > Generates vorticity of the Geostrophic wind

THCK |TKNS!| > Generates Thickness fields on levels defines by LVL1/LVL2

TWND |THWN!| > Generates Thermal Wind on levels defines by LVL1/LVL2

TADV > Generates Temperature Advection using the Total wind

QADV > Generates Mixing Ratio Advection using the Total wind

- Repeating previous commands

A list of the previous 21 commands input from the keyboard is given by entering the command **CMDS**. This command ERASES the screen. Individual commands can be examined without erasing the screen by using the command **CMD#**, where # is the order number of the previous command, e.g., **CMD2** will list the 2nd previous command. For commands 10 through 21, the letters A through L are used.

A previous command can be repeated by using the command **RPT#**, where again # refers to the order number of the previous command. The command results can be overlaid on the existing graphics by including an & after the command. As such, **RPTB&** will overlay the 11th previous command on the existing graphics.

A historical record of all commands used in a particular session is stored in the file **COMMAND.OUT**.

Reference to particularly complicated commands from this file can simplify writing the command files to be described next.
**-Calculating Convection and Shear Parameters

WINGRDDS can now directly calculate numerous convection and wind shear parameters. WINGRDDS also has new flag commands to control the way the convection and shear parameters are calculated. Below are the new control flags for convection:

- **VTMP** - Virtual Temperature Correction
 All convection parameters are calculated without virtual temperature correction by default. This flag enables that correction.
- **SBSI** - Surface-Based Lifted Parcel Selected
- **MLSI** - Mean-Layer Lifted Parcel Selected
- **MUSI** - Most Unstable Lifted Parcel Selected
- **USSI** - User-Selected Lifted Parcel Selected

If no Lifted Parcel method is selected, Surface-Based Lifted Parcel is default.

Examples –

To calculate CAPE with virtual temperature correction and using the Mean-Layer Lifted Parcel, enter:

```
CPOS VTMP MLSI
```

WINGRDDS can also calculate various wind shear and supercell wind-motion parameters. There is a new control flag for shear calculations:

- **KM** – Defines the Lower/Upper bounding levels in Kilometers
 The first * (0-9) defines the lower level to use and the second * (0-9) defines the upper level to use. Therefore, a command 14KM defines the 1km to 4km layer.

The wind shear Vector/Scalar diagnostics can be calculated on Pressure, Sigma, Potential Vorticity, Isentropic or Height layers defined with the SLYR command or with the **KM flag:

Examples –

To calculate the total shear between the isentropic layers I320 and I350, enter:

```
TSHR & SLYR I320 I350
```

To calculate the right-moving storm-relative helicity through the 0-3km layer, enter:

```
SRHR 03KM
```


The calculations of shear and convection parameters may not exactly match what other programs calculate due to the variations in near surface/boundary-layer data used to calculate the parameters. Some calculations are very sensitive to the lower layer data. However, the results you get with WINGRDDS should be very close to other programs’ calculations. Remember – the accuracy of the product is only as good as the data used in the calculation. The less vertical data which is available then the less accurate the solution will be.
- COMMAND (MACRO) FILES -
A command file is simply a sequence of command lines to be executed in series, and can be used as shorthand notations for frequently used or particularly complicated command sequences or to produce pre-defined products.

Pre-specified sequences of command lines can be written into an ASCII file using any word processor. The Command File can be given any 10 alphanumeric NAME and must be ended with the qualifier ".CMD". To execute the Command File, type the file NAME at the BEGINNING of a command line, followed IMMEDIATELY by a period. The requested command lines will be displayed in sequence, with a prompt to press [Enter] displayed between command lines.

Loops can also be set up by including the word LOOP alone at the beginning of any line of the Command File. Loops are ended by including the command line ENDL. User prompts at the end of each command line are NOT given while in LOOP mode. Pauses between looped command lines can be included by adding the commands 1SEC, 3SEC, 5SEC, 7SEC, or 9SEC, depending on the number of seconds desired.

Annotation can also be added to any line on the screen using the TXT# command. For example, 'TXT3 This is line 3' will write the text on the third line of the screen.

- Sample COMMAND FILE -
A sample Command File containing -

```
WIND&TEMP CIN5&HGHT CI60 SLVL 850 F00
LOOP
WIND&TEMP CIN5&HGHT CI60 F12
WIND&TEMP CIN5&HGHT CI60 F24 5SEC
WIND&TEMP CIN5&HGHT CI60 F36 5SEC
WIND&TEMP CIN5&HGHT CI60 F48 5SEC
ENDL
```

- will display the initial 850 mb heights, temperatures and winds, request the user to press [Enter], and then display a loop of the 12, 24, 36, and 48 h forecasts, pausing 5 seconds between each completed graphic.
**- VERTICAL LEVEL COMMANDS

Setting the vertical levels is quite easy within WINGRIDDSS. For example, to set the vertical level to 500 millibars, simply type in 500 < return >. For isentropic surfaces (see MTHT), precede the isentropic surface by the letter "I"; as in I303. For sigma level surfaces (as found in the NGM gridded data), precede the midpoint pressure with the letter "S", as in S982.

```plaintext
####           (NO OUTPUT) The numeric signs #### or ### are a 3 or 4
###             digit integer that represent the vertical level. See SLVL.
```

SLVL [vertical level] (NO-OUTPUT)

This optional command sets the vertical level of data to be examined. The actual numerical value (see "####"; e.g., "700") can be entered directly or (optionally) the numeric vertical level may be preceded by "SLVL" (e.g. "SLVL 500"). A vertical level can be one of the following:

1) an isobaric (constant pressure) level (e.g., 850);
2) an isentropic level (e.g., I298); or
3) a model sigma level (e.g., S982); or
4) a boundary layer/10 meter anemometer ht. (e.g., M10); or
5) a constant height level in Meters or Feet (in hundreds) (e.g., H100); or
6) a Potential Vorticity (PV) level (e.g., PV12)

To change the vertical level, enter a vertical level from one of the valid ones shown in the gridded display listing (see LIST). For example, entering "700" sets the vertical level to 700 mb. The current vertical level is displayed whenever LIST is invoked and can be found immediately below the command line. The default flag variable LEVL contains the current vertical level and is reset whenever the vertical level is changed. The default value for LEVL is initially set from the initialization file INITGRID.SPC.

The use of the command word SLVL is optional. Earlier versions of WINGRIDDSS required the SLVL command. A valid vertical level must be entered or data will not display.

If you type in the wrong value of SLVL (e.g., you type in 860 instead of 850 mb), WINGRIDDSS still accepts the bogus level, and the LIST command will show it - but nothing will ever be displayed since there are no data for that level. This is not an oversight in software design, but a way to allow for new vertical levels to be added at a future date without having to update the software. For example, at some later date, gridded data may become available for the 925 mb level. Hence, all you would need to type in is "925" and you would be ready to display the data for that level. The same rationale also applies for setting the forecast hour (F27 is as valid a forecast hour as F24).

The NCEP GFS model had an update to V16. One of the changes was to extend the pressure levels up to 0.01 mb. Since WINGRIDDSS treats pressure levels as whole integers (no decimal), the fractional pressure levels have to be represented in a different way. NGRB2PCG32 & WINGRIDDSS will represent the fractional pressure levels with a leading ‘0’ (zero). For example:

```plaintext
SLVL 001 = 0.01 mb
SLVL 002 = 0.02 mb
SLVL 01 = 0.1 mb
SLVL 07 = 0.7 mb
SLVL 3 = 3 mb
```

etc.
VERTICAL LEVEL COMMANDS (cont.)

B### (NO OUTPUT)
Sets the vertical level either to the 10-meter anemometer height (M10) or to some other boundary layer level. The default flag variable LEVL is set accordingly.

LVL1 (NO OUTPUT)
LYR1
Temporarily sets the vertical level to obtain data from bottom of layer for variables specified to the left. LVL1 is a system flag variable for the lower layer. For example, if the layer variables as shown on the WINGRIDD variable line are "1000/500", then the command "WIND LVL2" will plot the total winds at 500 mb. See also SLYR,

LVL2 (NO OUTPUT)
Temporarily sets the vertical level to obtain LYR2 data from bottom of layer for variables specified to the left. LVL2 is a system flag variable for the lower layer. For example, if the layer variables as shown on the WINGRIDD variable line are "S982/S896", then the command "WIND LVL1" will plot the total winds for the sigma three layer. See also SLYR, LVL1.

LEVL (NO OUTPUT)
Overrides the LVL1 and LVL2 variables and gets data from original level. See also LVL1, LVL2, SLYR.

MMSL (NO OUTPUT)
Sets the vertical level to mean sea level (MSL) pressure for the NMC Rapid Update Cycle (RUC) hourly surface analysis using the same reduction-to-sea level technique as used in the Forecast Systems Laboratory (FSL) version of the Mesoscale Analysis and Prediction System (MAPS). See NMSL

NMSL (NO OUTPUT)
Sets the vertical level to mean sea level (MSL) pressure for the NMC Rapid Update Cycle (RUC) hourly surface analysis using the same reduction-to-sea level technique as used by NMC Automation Division. See MMSL

S982 (NO OUTPUT)
Sets the vertical level to the sigma one level. This is the lowest sigma surface.

S943 (NO OUTPUT)
Sets the vertical level to the sigma two level.

S896 (NO OUTPUT)
Sets the vertical level to the sigma three level.

S784 (NO OUTPUT)
Sets the vertical level to the sigma five level.

S### (NO OUTPUT)
Sets the level to the sigma level centered at ### mb. Current valid sigma level for the NGM include: S982, S943, S896, S784, which represent the bottom, second, third, and fifth sigma levels, respectively. The default flag variable LEVL is set accordingly.
I### (NO OUTPUT)
Sets the vertical level to ### degrees Kelvin isentropic surface. This assumes the isentropic data for that level were already created using either the MTHT command or data from upper level MAPS output. For example, entering the command I303 causes all subsequent data requests to use data interpolated to the 303K isentropic surface. The default flag variable LEVL is set accordingly.

PV## (NO OUTPUT)
Sets the vertical level to ## Potential Vorticity Units surface. The middle decimal is not shown. For example, entering the command PV12 causes all subsequent data requests to use data interpolated to the 1.2 PVU surface. The default flag variable LEVL is set accordingly.

P+## / P-## (NO OUTPUT)
Sets the vertical level to ## Potential Vorticity level above/below the Tropopause (in feet). This is a 2 digit number divided by 100. For example, entering the command P+05 causes all subsequent data requests to use data interpolated to the 500ft above the Tropopause surface and entering the command P-15 causes all subsequent data requests to use data interpolated to the 1500ft below the Tropopause surface. The default flag variable LEVL is set accordingly.

SLYR [LVL1 LVL2] (NO OUTPUT)
Sets the lower and upper layers for use in data selection. LVL1 is a system flag variable for the lower layer while LVL2 is the variable for the upper level. For example, the sequence SLYR 1000 500 will cause any of the WINGRIDDS commands that perform layer calculations (e.g., see LDIF, LSUM, LAVE, etc.) to set LVL1 equal to 1000 mb as the lower surface and 500 mb (= LVL2) as the upper surface.

The vertical levels can not only be pressure levels, but also isentropic or sigma level data, or a combination of each. For instance, the command SLYR S982 500 sets the bottom level (LVL1) to the bottom sigma level surface (S982) while setting the upper level (LVL2) to 500 mb.

**- COMMANDS TO ALTER CONTOUR INTERVALS

By default, WINGRIDDS will select a contour interval automatically for each field displayed. For example, when you want a depiction of temperatures, you type TEMP. WINGRIDDS then determines what appears to be an "eye-pleasing" number of contours for the range of data over the given display area. An "eye-pleasing" number of contours would be between about six and twelve contours. A user can optionally override the WINGRIDDS choice of contour interval by following the command with a specific contour interval, e.g., TEMP CIN2 contours isotherms every two degrees C.

In addition, the WINGRIDDS command line interpreter (the software that processes commands), is quite flexible. The command processor looks for commands beginning with the letters "CIN" or "CI" and a number as a contour interval. Examples are "CIN6", "C10", "CI50", etc., which correspond to contour intervals of 6, 10, and 50 units, respectively. In addition, the processor uses a template of the form C#+# or G#+# when interpreting what contour interval command is given. With this in mind, contours intervals in the range of 9×10^{-9} to 9×10^{-9} are possible. For example, if a contour interval of every 0.01 is desired, one simply types in "C1-1"; if an interval of 0.05 is needed, then type in "C5-2". With a little practice, specifying contours becomes easy.

There commands to allow the user to interactively set the contour interval (see CINT). The maximum number of contours can be changed (see CNUM). A specific contour interval can be retained for all subsequent plots (see CISV) or until the command to resume automatic program selection of contours is given (CINX).
COMMANDS TO ALTER CONTOUR INTERVALS (cont.)

NOTE: specifying contour intervals having two significant digits (e.g., CI25, CI33, or CI75) will NOT produce the desired results of contouring every 25, 33 or 75 units. However, when two digits are specified, but with only one significant digit (e.g., CI20, CI30, etc.), the desired results are obtained.

The following are the contour interval commands:

CNUM [Integer]
Changes the maximum number of contours to display. The default maximum number of contours is 50.

CINT
Displays the maximum and minimum of preceded by a particular data field and then requests user input in setting the contour interval. For example, "DVRG WIND CINT prompts the user:

"CONTOUR INTERVAL = OE+00 - INPUT NEW VALUE - "

One can enter the new value in one of two ways:
1) type in a positive interval number directly, e.g., 2, 10, .05, 100, etc.
2) type the interval number in an "E-format", i.e., scientific exponent notation; 1E5, 1E+5, 5E-4, etc.

CISV
Sets mode where specified contour interval is retained for future plots. The contour interval is canceled by issuance of the command CINX.

CINX
Returns to mode in which program selects contour interval for each plot. See also CISV, CINT.

CIN#
Sets contour interval to # units. "#" can be in the range 1 to 9, inclusive.

CIN1
Sets contour interval to 1 unit.

CIN#
CIN2 Sets contour interval to 2 units. See CIN#.

CI#0
Sets contour interval to # of tens of units. "#" can be in the range 1 to 9, inclusive.

CI10
Sets contour interval to every 10 units. See CI#0.

CI20
Sets contour interval to 20 units. See CI#0.

C#00
Sets contour interval to # hundreds of units. "#" can be in the range 1 to 9, inclusive.
C100
Sets contour interval to 100 units. See C#00.

C200
Sets contour interval to 200 units. See C#00.

C#++
Sets contour interval to # x 10** units. For example, C2+3 translates into a contour interval of \(2 \times 10^3 = 2000\) units.

C1+3
Sets contour interval to 1000 units or 10^3. See C#++.

C2+3
Sets contour interval to 2000 units or \(2 \times 10^3\). See C#++.

C1.#
Sets contour interval to tenths units (0.#) or # x 10^-v. See C#-1

C1.1
C1-1
Sets contour interval to 0.1 units. See C#.1 and C#.

C1.2
C2-1
Sets contour interval to 0.2 units. See C#.1 and C#-1.

C#--
Sets contour interval to # x 10^-^ units. For example, C2-3 translates into a contour interval of \(2 \times 10^-^ = 0.002\) units.

C2-2
Sets contour interval to every .02 units. See C#-. C5-3 Sets contour interval to .005 units. See C#-

**- COMMANDS TO ALTER FORECAST TIME

WINGRIDDS lets you easily change forecast hours (see, e.g., FOO, F12, etc.). Also, you can specify a default pair of forecast hours that allows you to compute time differences of some parameter (see SFHS). Lastly, you can obtain a grid from one (or both) of the forecast hour pairs without changing the default forecast time pair values (see FHR1 and FHR2).

F-1 or ANAL
Sets the default forecast hour to use the 00-hour grids (i.e., the "analyzed" model grids from the objective analysis routine before the grids have been subject to the model's initialization process).
COMMANDS TO ALTER FORECAST TIME (cont.)

FOO or **INIT**
Sets the default forecast hour to use the 00-hour (or initialized) grids. In most cases the "analyzed" (see F-1) and initialized data grids are nearly identical.

F12
Sets the default forecast hour to use the 12-hour grids.

F24
Sets the default forecast hour to use the 24-hour grids.

F36
Sets the default forecast hour to use the 36-hour grids.

F48
Sets the default forecast hour to use the 48-hour grids.

F##
Interprets the "##" to be a number whose value is set to the default forecast hour. For example, F18, sets the default forecast hour to use the 18-hour grids, while the command F120 sets the forecast hour to use the 120-hour grids. The numeric value of ## or ### can be negative, e.g., F-3 sets the default forecast hour to use data grids 3 hours prior to the model initialization (see F-6, F-6).

NOTE: WINGRIDDS allows the use to set the default forecast hour to practically anything. However, the data grids are only available at set forecast hours (usually the main synoptic times). So setting the default forecast hour to say, F26, is permissible, but there is likely no data available at this forecast hour. The data grids available at a specified forecast hour can be seen with LIST.

GUES or equivalently **F-3**
F-3 Sets the default forecast hour to use "first-guess" grids used in developing the model's initial analysis grids. Usually, this is a grid valid 3-hours prior to the model analysis valid time.

GES6 or equivalents **F-6**
F-6 Sets the default forecast hour to use "first-guess" grids valid 6-hours prior to the model analysis valid time.

SFHS [forecast_hr1 forecast_hr2] or **FHRS**
Sets the default forecast hour pair. The forecast hour pair is entered using either integer numbers (e.g., 12, 48, 06,120) or mnemonics (e.g., INIT). SFHS requires the user to type in the two forecast hours immediately to the right (e.g., SFHS INIT 24 sets the first forecast hour (FHR1) to use the 00-hour grids and the second forecast hour (FHR2) to use the 24-hour grids. In this case, you could compute the 24-hour change in some quantity, say, temperature at a given vertical level by typing the commands: TEMP TDIF which results in a difference field of temperatures between the initial and 24-hour forecasts. You can specify the forecast hours in any order (hence, SFHS 24 12 is valid).
COMMANDS TO ALTER FORECAST TIME (cont.)

The values of the FHR1 and FHR2 can be found on the default parameters lines immediately below the command line. Remember to use valid forecast hours (i.e., hours that the LIST command shows you actually have valid data). The FHRS command does the same thing as SFHS. See also TDIF.

SFHR #### FHOR
Sets the forecast hour system variable. The user can either enter an up to 4-character integer forecast hour immediately to the right of SFHR or the user is prompted for a number to input to set the default forecast hour. Number must be an integer (in other words, you cannot use mnemonics like "INIT or a program error occurs). SFHR and FHOR perform the same function.

FHR1
Gets data for the command(s) immediately to its left from first time of the "FHRS" time pair. The command string "SDIF TEMP TEMP FHR1" will subtract the temperature for the current forecast hour from the temperature at the "FHR1" forecast hour. See also FHR2, SFHS, FHRS.

FHR2 Gets data for command(s) immediately to its left from first time of the "FHRS" time pair. See also FHR2, SFHS, FHRS.

FH+
Steps ahead the forecast hour to the next available forecast hour in the data set.

FH−
Steps back the forecast hour to the previous available forecast hour in the data set.

- COMMANDS TO DISPLAY GRIDDED DATA

In general, most commands issued in WINGRIDDS will all display data from the given vertical level and forecast hour as noted by the LEVEL and FHOUR flags in the data listing (see LIST). The data displayed can be represented in one of three ways:

1) contours of a scalar field (e.g., temperature, mixing ration, vorticity);
2) a vector representation (e.g., wind, gradient of temperature) either as an arrow or a wind barb; and
3) a numeric data representation of the data at a grid point (see DATA, DDFF, etc.).

The commands below can be combined with other diagnostic functions. For example, "SDIF TEMP DWPT" computes the difference of the dry bulb temperature minus the dew point temperature at a given level and forecast hour and displays this difference as a contoured field (i.e., contours of dew point depression).

- PRESSURE and GEOPOTENTIAL HEIGHT Commands

PRES (SCALAR)
Calculates pressure from available data fields. For example, if the vertical level is set to "S982" (i.e., the lowest sigma level in the NGM model), then typing "PRES" will, in essence, display a map of contoured terrain elevation, but in units of pressure (mb). This is because the NGM uses the terrain-following sigma coordinate system. The "982" for the first (lowest) sigma level refers to the pressure at the midpoint of the lowest sigma level assuming a surface pressure of exactly 1000 mb.
PMSL (SCALAR)
Contours Mean Sea Level (MSL) Pressure (in units of millibars).

HGHT (SCALAR)
Displays contours of geopotential height (in meters) for the specified vertical level and forecast hour. For example, if the vertical level is 850 mb and the forecast hour is set to 12 hours, then entering the command HGHT will draw the 850 mb, 12-hour forecast contoured geopotential height field. It is invalid to type HGHT when the vertical level is set to either isentropic or sigma level coordinates.

- TEMPERATURE Commands

TEMP (SCALAR)
TMPC
Displays contours of model forecast dry bulb temperatures in degrees Celsius (deg C) at a specified forecast hour and vertical level. The command TMPC does the same thing as TEMP.

TMPF (SCALAR)
Displays contours of model forecast temperatures in degrees Fahrenheit (deg F) at a specified forecast hour and vertical level.

TMPK (SCALAR)
TMPA
Displays contours of model temperatures in Kelvin (K) at a given forecast hour and vertical level. The command TMPA does the same thing as TMPK.

THTA (SCALAR)
Displays contours of potential temperature (customarily denoted by the Greek letter "theta") in Kelvin (K) at the specified forecast hour and vertical level. Potential temperature, as computed from Poisson's equation, is defined as the temperature which a parcel of dry air at some specified pressure and temperature would have if it were expanded (or compressed) dry adiabatically to a pressure of 1000 mb.

THTE (SCALAR)
Displays contours of equivalent potential temperature (denoted by the Greek letter "theta" with an E subscript or simply called Theta-E) at the specified forecast hour and vertical level in Kelvin (K). Equivalent potential temperature is defined as the temperature an air parcel would have if all its latent heat were converted to sensible heat by means of a pseudo-adiabatic expansion to low pressure and temperature a dry adiabatic compression down to 1000 mb. Hence, a field of Theta-E gives information on both the thermodynamic and moisture content at a given level.

- WIND COMMANDS

Every WINGRIDDS gridded data file contains model forecast wind data broken down into U (north-south) and V (east-west) wind components. WINGRIDDS follows the conventional meteorological nomenclature for plotting the U- and V- components:

- **U** is positive if the wind has a westerly component;
- **U** is negative if the wind has an easterly component;
\(V \) is positive if the wind has a southerly component;
\(V \) is negative if the wind has a northerly component.

The U-component of the total wind is normally displayed. The U- and V-wind components can be displayed automatically as vectors centered at each model grid point (see WIND). A vector quantity has both magnitude and direction. A scalar quantity (like temperature) has only magnitude. Any vector quantity (including not only winds but, e.g., the gradient of a scalar) can be displayed at each grid point using either 1) an arrow format (see AROW), 2) conventional wind barb format (see BARB) or 3) streamline format (see STRM).

A total of three different wind components can be displayed. They are: 1) the total model forecast wind (WIND), 2) the geostrophic (GEOS) wind, and 3) the ageostrophic (AGEO) wind components. The "total wind" is the vector sum of the geostrophic and ageostrophic winds. The geostrophic wind obeys the geostrophic-wind relationship which can be found in any dynamics textbook. To wit, the geostrophic wind blows parallel to isobars on a constant height surface; to geopotential height contours on a constant-pressure surface, and to isopleths of the Montgomery streamfunction on an isentropic surface.

Units of wind speed for both the arrow and wind barb formats can be plotted using one of: meters/second, knots, miles/hour, or kilometers/hour (see WIND, WKNT, WMPH, and WKPH, respectively). If winds are plotted using the wind barb format, then the barbs points in the direction FROM which the wind is blowing. Each full stem represents ten units while each half stem denotes the fives unit. For example, any 25 unit wind speed (whether it be in knots, meters/sec, etc.) would always have two full stems and one half stem. If winds are plotted as arrows, then the arrow points in the direction TO which the wind is blowing. The length of the wind arrow is, by default, scaled so that the highest wind speed for the display domain spans one grid increment.

The individual U-and V-wind components can be displayed as contoured fields (see UGRD, VGRD and XCMP, YCMP). The wind direction over the display domain can be contoured (see DRCT - an isogonal analysis) as well as wind speeds - isotachs (see SPED, SPKT, SPML, SPKM, WSPD). A packed digital presentation of wind direction and speed is available (see DATA, DATT, DATE, DDFF).

Wind vectors in WINGRIDDS are displayed using the standard meteorological wind direction. This direction is the compass heading from which the wind is blowing. In a meteorological coordinate system, a south wind vector points north with a compass heading of 180 degrees. If a standard cartesian X-Y coordinate system is used (with the positive X abscissa axis increasing to the right, and the positive Y ordinate axis increasing up), the meteorological wind direction is the angle measured clockwise from the -Y axis. The mathematical wind direction is the angle measured counterclockwise from the positive X axis. To obtain the mathematical wind direction, simply subtract the meteorological wind direction from 270 degrees. (from p. 19, Bluestein, 1992 book)

The following commands are flags to show how the wind is displayed.

AROW
Sets the default format for plotting vectors to arrows. All subsequent displays of any vector quantity (including winds) will be depicted using the arrow format.

BARB
Sets the default format for plotting vectors to wind barbs. All subsequent displays of a vector quantity (not just winds) will be depicted using the wind barb format.
WIND COMMANDS (cont.)

STRM
Sets the default format for plotting vectors to streamlines. All subsequent displays of a vector quantity (not just winds) will be depicted using the wind streamline format.

The following commands for displaying and manipulating winds are given in alphabetical order.

AGEO [VECTOR]
Displays a computed field of ageostrophic winds derived from the total U- and V-wind components. The ageostrophic wind depicted in WINGRIDDS is the vector difference between the total (WIND) and geostrophic (GEOS) wind components. That is, you could produce a field of ageostrophic wind vectors by entering

"VDIF WIND GEOS".

BKNT [VECTOR]
Displays the total wind in wind barb format using units of knots (kts) and sets subsequent display of vectors in wind barb format.

BKPH [VECTOR]
Displays the total wind in wind barb format using units of kilometers per hour (km/hr) and sets subsequent display of vectors in wind barb format.

BMPH [VECTOR]
Displays the total wind in wind barb format using units of miles per hour (mph) and sets subsequent display of vectors in wind barb format.

BWND [VECTOR]
Displays the total wind in wind barb format using units of meters/second (m/s) and sets subsequent display of vectors in wind barb format. WNDB does the same thing.

DDDD [VECTOR]
(NUMERIC) Displays digital values at every gridpoint of the direction (on degrees) of any vector. Same as issuing the commands "DATA DRCT [vector]". See also DRCT.

DDFF [VECTOR]
(NUMERIC) Displays digital values of any vector (typically a wind vector) in a packed format of 4 characters. If "XXYY" represents the packed format, then XX represents the direction of the vector in tens of degrees, while YY represents the magnitude of the vector in whatever units are displayed. The command line DDFF WIND displays a grid of 4 character groups (e.g., 1209) at every model grid point within the display domain. The example group "1209" is decoded as a wind direction of 120 degrees at 9 m/s.

DRCT [VECTOR]
(SCALAR) Contours values of the direction of a vector (typically a wind vector—but any vector quantity can be used) from 0 to 360 degrees in a meteorological sense (see introduction to winds). If "vector" is a wind vector, then the contours are equivalent to isogons. i.e. lines of constant wind direction. See also DDDD.
WIND COMMANDS (cont.)

The DRCT command also acts as the Fortran equivalent to an "ATAN2" command, which computes the tangent angle of two linear components (rise over run). Hence, the command: "DRCT VGRD UGRD" takes the tangent of the u- and v-wind components and displays contours of meteorological degrees.

The "vector" used for DRCT need not be the wind but could be any x- and y-type quantity. When used as an "ATAN2" command, the y-component is given immediately to the right of DRCT, followed next by the x-component.

GEOS [VECTOR]
Displays a computed field of geostrophic winds from the total U and V wind components. The geostrophic wind expresses the balance between the horizontal Coriolis and pressure gradient (or geopotential height gradient) forces. On a constant isobaric level, the geostrophic wind blows parallel to the geopotential height lines with wind speeds inversely proportional to the spacing of the height lines. See also WIND, AGEO.

KMPH [vector]
(SCALAR) Converts a scalar field having units of meters/sec (e.g., WSPD) to kilometers per hour (kph).

KNOT [vector]
(SCALAR) Converts a scalar field having units of meters/sec (e.g., WSPD) to knots (kts).

MLPH [vector]
(SCALAR) Converts a scalar field having units of meters/sec (e.g., WSPD) to mile per hour (mph).

SPED or SPED [vector]
(SCALAR) The command SPED by itself will display a contoured field of the magnitude of the total wind in meters/second, i.e., a contoured isotach field. SPED, by itself, is equivalent to the command sequence MAGN WIND. Also, WSPD is equivalent to SPED. See also MAGN.

Optionally, SPED any vector quantity (e.g., SPED GEOS) to its right will display contours of the magnitude of that vector quantity. The two command sequences SPED GEOS and MAGN GEOS produce identical results: a contoured field of the magnitude of the geostrophic wind. SPED can be thought of as equivalent in usage to the MAGN command when a vector is specified.

SPKT [vector]
(SCALAR) Displays contours of the magnitude of a wind vector in knots converted from meters/second. Unlike SPED, a vector wind must be given with SPKT. Typically, the required vector is one of WIND, GEOS, or AGEO.

SPKM [vector]
(SCALAR) Displays contours of the magnitude of a wind vector in kilometers/hour (km/h) converted from meters/second. Typically, the required vector is one of WIND, GEOS, or AGEO.

SPML [vector]
(SCALAR) Displays contours of the magnitude of a wind vector in miles per hour (mph) converted from meters/second.
WIND COMMANDS (cont.)

VKNT [vector]
(VECTOR) Converts the "vector" quantity from m/s to knots (kts). The commands VKNT WIND will display the total wind in knots without resetting the arrow or barb flags. See also VKPH and VMPH.

VKPH [vector]
(VECTOR) Converts the "vector" quantity from m/s to kilometers per hour (kph). See also VKNT and VMPH.

VMPH [vector]
(VECTOR) Converts the "vector" quantity from m/s to miles per hour (mph). See also VKNT and VKPH.

WDDF
(NUMERIC) Same as DDFF except no vector is specified and the total wind direction and speed (in m/s) are displayed. WDDF is equivalent to the command sequence DDFF WIND.

WDDD
(NUMERIC) Displays digital values of the total wind direction (degrees). WDDD is equivalent to the command sequence "DATB DRCT WIND".

WDRC (SCALAR)
Contours values of the total wind direction in degrees. Same as issuing the commands "DRCT WIND".

WIND
(VECTOR) Displays a representation of the model total wind vector in units of meters/second (m/s) for the specified level and forecast hour centered at a grid point. If the wind display flag is set to AROW, then the length of the wind vector arrows is automatically scaled so that the maximum wind vector will be displayed as an arrow whose length is equal to one gridbox interval. If the BARB flag is set, then one full barb equals 10 m/s while a half barb equals 5 m/s.

WKNT
(VECTOR) Displays the model total wind in either arrow or barb format with wind speeds given in knots (kts). See WIND, WKPH, and WMPH.

WKPH
(VECTOR) Displays the model total wind in either arrow or barb format with wind speeds given in kilometers per hour (km/hr). See also WIND, WMPH and WKNT.

WMPH
(VECTOR) Displays the model total wind in either arrow or barb format with wind speeds given in miles per hour (MPH). See also WIND, WKNT, and WKPH.

WNDA
(VECTOR) Displays the total wind in arrow format using units of meters/second (m/s) and sets subsequent display of vectors in arrow format.

WNDB
(VECTOR) Same as BWND. See BWND.
WSPD
(SCALAR) Displays contours of the magnitude of the total wind in meters/sec, i.e., isotachs in m/s. See SPED.

WSPK
(SCALAR) Displays contours of the magnitude of the total wind in knots, i.e., isotachs in knots. See also SPKT.

**- CROSS/TIME SECTION DISPLAYS

WINGRIDDS offers great flexibility in constructing vertical cross sections both in a spatial or temporal reference frame. It is often useful when assessing the state of the atmosphere to display meteorological parameters in a vertical cross section. WINGRIDDS allows one to switch back and forth between a vertical cross section view and a horizontal map, or "plan" view (see PLAN, CROS, TIME). In fact, using the overlay capability, one can overlay plan view maps onto a cross section or vice versa.

A spatial cross section represents a vertical slice through the atmosphere between any two geographical points at a given forecast hour.

The endpoints of the cross section are user-specified in terms of two latitude/longitude coordinate pairs which represent the left and right endpoints of the cross section, respectively. The command XSCT defines the endpoints of the spatial cross section. Spatial cross section endpoints are saved to a file (XSCT.INF) for future reference for use with the CROS command. A spatial cross section is labeled by running the command file "XLBL".

A temporal cross section represents the change in meteorological parameters occurring with time above a single geographical point.

The TSCT command is used to define the lat/lon pair at a specific geographical point. The left and right endpoints of a temporal cross section are user-selectable forecast hours. The default temporal cross section will contour values every 12 hours from 00 through 48 hours (see TINC to change the time interval; see THRS to specify the forecast time endpoints). The geographical points specified with the TSCT command are also stored in a file (TSCT.INF) for use with the TIME command. A temporal cross section can be labeled by running the command file "TLBL".

***CROSS/TIME SECTION COMMANDS

Any field which can be displayed in plan (i.e., horizontal) view can be displayed in either a spatial or temporal cross section. For example, you can contour the divergence of the wind in a spatial or temporal cross section by entering the cross section mode (typing one of: XSCT, CROS, TSCT or TIME) and typing "DVRG WIND". In this manner, one can investigate the old adage that wind convergence (indicated by negative values of divergence) in the lower levels of the atmosphere is usually beneath an area of upper level divergence. Also, you can simply type "WIND" while in a cross section mode to observe the "true" earth-relative wind directions (vs a "cross section-relative" wind) (see XREL).

You can overlay as many fields on a cross section as you wish. WINGRIDDS contains several commands that are used to look at winds either normal to (see NORM, VNRM) or tangential to (see TANG, VTNG) the plane of the cross section. Also, WINGRIDDS has a useful command that combines the scalar vertical motion field (VVEL) with the tangential component of the ageostrophic wind (TANG AGEO) to produce a "vertical circulation" that is observed in the vicinity of jet streaks (see VCRC, VCR1).
WINGRIDDS also has commands to "rotate" wind vector into a cross section-relative sense (see XREL, GEOX, AGEX). To understand what is plotted you must first understand how the cross section is specified. Say you wanted a spatial cross section from 50N/100W to 35N/85W. If you specify the cross section with the command: XSCT 50 100 35 85, then the left side of the cross section is at 50N/100W and the right side ends at 35N/85W. Conversely, if the same two endpoints were specified in reverse order (i.e., XSCT 35 85 50 100), then the left side of the cross section would be at 35N/85W and the right side ends at 50N/100W.

When you "rotate" the winds, the winds are plotted in a sense of looking from the first specified cross section lat/long pair to the second specified lat/long pair. Hence, the following statements regarding rotated winds in a cross section are true:

A north wind represents a wind blowing into the cross section from left to right as viewed from the first defined endpoint looking toward the second defined endpoint.

A south wind represents a wind blowing into the cross section from right to left as viewed from the first defined endpoint looking toward the second defined endpoint.

An east wind represents a wind blowing towards the first defined endpoint.

A west wind represents a wind blowing away from the first defined endpoint.

Finally, the number of vertical levels displayed in a cross section can be specified by the user depending what vertical resolution is available in the gridded data. The command XLVL is used along with a 4-letter file name ending in ".LVL" (e.g., MAND.LVL) to change the vertical spacing. The format of the ".LVL" files is:

##xxx1xxx2xxx3xxx4 ... xxxN

where the left-most 2 digits (##) is the number of vertical levels followed immediately by this same number of vertical levels. The default is to use the lowest 10 mandatory levels (viz., 1000, 850, 700, 500, 400, 300, 250, 200, 150, and 100).

The following are the commands related to cross sections:

XSCT [left and right Lat/Lon pairs]
(SWITCHES TO SPATIAL VERTICAL CROSS SECTION MODE) Defines the two endpoints for a spatial cross section in the vertical. For instance, the command

XSCT 45 95 33 70

specifies the left portion of the cross section begins at 45N/90W and extends to the right to the point 33N/70W. Typing XSCT by itself (without lat/lon pairs) will cause the system to prompt the user for the two geographical endpoints. The lat/lon pair immediately to the right of XSCT is defined as left-most endpoint. After the cross section is defined, a straight line is drawn connecting the two endpoints on all subsequent maps (this line can be erased on future maps by entering: "XSCT 0 0 0 0".

NOTE: WINGRIDDS has the flexibility to define a spatial cross section so that the western-most point is either on the left or right side of the cross section. That is, the following command sequences define the same line:
but for the first case, the western-most point is on left side, while in the second case, the western-most point is on the right side. Be careful when interpreting wind directions in a cross sections where the western-most point is on the right side! See also PLAN, CROS, TIME.

TSCT [one lat/long pair]
(SWITCH TO TIME/HEIGHT CROSS SECTION MODE) Defines the location for a time/height cross section, where time is given on the abscissa while height is the ordinate. The location of the time/height cross section is denoted on the map with a plus"+" sign. Once in time cross section mode, all subsequent commands are displayed in vertical cross section. See TINC to change the time interval; see THRS to specify the forecast time endpoints). See also PLAN, CROSS.

XREL [vector]
(VECTOR) Rotates the vector wind from an earth-relative to a cross section-relative frame of reference. To better understand what these winds mean, imagine that you are standing at the left side of the cross section looking toward the right side and you are interpreting the output of the command XREL BKNT. A north wind represents winds blowing into the cross section from left to right. A south wind represents winds blowing in plane of the cross section towards you. A west wind represents winds blowing in the plane of the cross section away from you. See also WNDX.

AGEX
(VECTOR) Displays the ageostrophic wind rotated relative to the cross section (same as XREL AGEO). See also discussion for XREL

GEOX
(VECTOR) Displays the geostrophic wind rotated relative to the cross section. See also discussion for XREL Issuing the commands: XREL GEOS does the same thing.

WNDX
(VECTOR) Displays the total wind rotated relative to the cross section (same as XREL WIND). See discussion for XREL

TANG [vector]
(SCALAR) Finds cross section-relative tangential component of the vector. The tangential wind component is the wind blowing wholly in the plane of the cross section. If the wind is blowing perpendicular to the cross section, the tangential wind component is zero. Positive values of tangential winds represent winds blowing from left to right or away from the first defined (left-most) cross section endpoint. Negative values represent winds blowing from right to left or towards the first defined (left-most) cross section endpoint. See also VTNG and NORM.

VTNG [vector]
(VECTOR) Plots cross section-relative tangential wind component On vector form) for the vector specified. The vector of the tangential wind either point to the left or right. Tangential wind arrows pointing from left to right represent winds blowing away from the first defined (left-most) cross section endpoint while wind arrows pointing from right to left denote winds blowing towards the first defined (left-most) cross section endpoint. See TANG, VNRM.
NORM [vector]
(SCALAR) Finds cross-section relative normal wind component for the vector specified. The normal wind component is the component of the wind relative to the cross section that is blowing wholly perpendicular to the cross section. Positive values of the normal wind component represent winds blowing through the cross section from left to right as viewed if standing at the left-most portion of the cross section. Negative values of normal winds represent winds blowing through the cross section from right to left as viewed from the left-most portion of the cross section endpoint. See also VTNG and TANG.

VNRM [vector]
(VECTOR) Plots the cross-section relative normal wind component (in vector format) for the vector specified. The normal wind component is the wind component relative to the cross section that is blowing wholly perpendicular to the cross section. The normal wind vectors will either point straight up or down. A wind arrow pointing up (a "south" wind), denoting positive values of the normal wind component, represent winds blowing through the cross section from left to right as viewed if standing at the left-most portion of the cross section. A wind arrow pointing down (a "north" wind), denoting negative values, represent winds blowing through the cross section from right to left as viewed from the left-most portion of the cross section endpoint. See also VTNG and TANG.

VCRC [vector]
(VECTOR) Plots a vector representing the vector tangential wind component (VTNG [vector]) scaled by the vertical motion field (WEL). This vector represents the "vertical circulation" in the plane of the cross section. It has useful applications in diagnosing thermally direct and indirect circulations as found in the entrance and exit regions of jets. See also ACRC, VCR2, GCRC, and WCRC.

VCR2 [vector]
(VECTOR) Plots a vector representing the vector tangential wind component scaled by the vertical motion. Same as VCRC except resultant vectors are "magnified" by 2. See VCRC.

VCR5 [vector]
(VECTOR) Plots a vector representing the vector tangential wind component scaled by the vertical motion. Same as VCRC except resultant vectors are "magnified" by 5. See VCRC.

ACRC
(VECTOR) Displays vertical/tangential circulations of the ageostrophic wind (in vector form). Same as entering "VCRC AGEO". See also VCRC.

GCRC
(VECTOR) Displays vertical/tangential circulations of the geostrophic wind (in vector form). Same as entering "VCRC GEOS". See also VCRC.

WCRC
(VECTOR) Displays vertical/tangential circulations of the total wind vector form). Same as entering "VCRC WIND". See also VCRC.

CROS
(NO OUTPUT) Re-activates the spatial cross sectional display. The line denoting the activated cross section on the map background will be highlighted with a brighter white color. Subsequent commands will be processed in the spatial cross section mode until terminated with a return to plan view (PLAN) or time/height cross section mode (TIME). If the XSCT command has not been run during the active WINGRIDDDS session and CROS is entered, then the file "XSCT.INP supplies the endpoints for the cross section.
PLAN
(NO OUTPUT) Re-activates viewing maps in "plan" 0-e., horizontal) mode, usually issued to exit viewing parameters in a cross section mode. The line denoting the activated cross section or time/height location on the map background is de-emphasized in a dull shade of white. Subsequent commands will be processed in the plan view mode until terminated with a return to either a spatial cross section model (CROS) or time-height cross section model (TIME).

TIME
(NO OUTPUT) Re-activates the time/height cross sectional display. A plus sign denotes the location of the activated time cross section, and is highlighted with a bright white color. Subsequent commands are processed in the time-height cross section mode until terminated with a return to plan view (PLAN) or spatial cross section mode (CROS). If the TSCT command has not been issued during the active WINGRIDDs session and TIME is entered, then the file TSCT.INF supplies the geographical location for the cross section.

TINC [##]
(NO OUTPUT) Changes the time increment for contouring display in time-height cross sections. The system default is to contour data every 12 hours (TINC 4). The time increment is set according to the following table:

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>INCREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TINC 8</td>
<td>every 24 hours</td>
</tr>
<tr>
<td>TINC 4</td>
<td>every 12 hours</td>
</tr>
<tr>
<td>TINC 2</td>
<td>every 6 hours</td>
</tr>
<tr>
<td>TINC 1</td>
<td>every 3 hours</td>
</tr>
</tbody>
</table>

NOTE: at present, the time interval between gridded model data fields are either every 12 hours or every 6 hours. Hence, if you have 6-hourly interval grids, set TINC 2.

XLVL [4 Character name]
Reads the file "xxxx.LVL", where "xxxx" is any 4 characters, to define both the spatial XSCT and/or temporal TSCT cross section vertical levels. The default is to use the lowest 10 mandatory levels (viz., 1000, 850, 700, 500, 400, 300, 250, 200, 150, and 100). The xxxx.LVL file is in ASCII format (no word processing format codes please!). An example file, "MAND.LVL", is provided with each copy of WINGRIDDs. The format of all ".LVL" files is:

##xxx1xxx2xxx3xxx4 ... xxxN

where the left-most 2 digits (##) is the number of vertical levels followed immediately by this same number of vertical levels.

For example the following file • MAND.LVL - specifies 10 vertical levels at 1000, 850, 700, 500, 400, 300, 250, 200, 150, and 100 millibars:

101000 850 700 500 400 300 250 200 150 100

In Fortran parlance, the format above is represented by "12,1014". The vertical levels need not all be pressure; they could be sigma level data (e.g., S896).

THRS [4 Character name]
(NO OUTPUT) Reads the file —.LVL to define time-height cross section hours. Uses the same format as is used in reading the "xxxx.LVL" files.
**- MOISTURE COMMANDS

A host of moisture fields are available in WINGRIDDs. For example, to contour the 24-hour forecast of 850 mb mixing ratio, simply set the forecast hour to 24 (F24), the vertical level to 850 mb (850) and type "MIXR". WINGRIDDs will then contour mixing ratios at 850 mb forecast at 24 hours. The mixing ratio (MIXR) is available for most vertical levels and forecast hours (NOTE: for some levels specific humidity (SPFH) is available which is virtually identical to the mixing ratio). Other computed moisture parameters include relative humidity (RELH), saturated mixing ratio (SMIX), and the saturation deficit of mixing ratio - SDEF (which is simply the difference between the saturated and unsaturated mixing ratios).

Since moisture is a scalar, all of the scalar diagnostic commands can be used, e.g., moisture advection by the wind (ADVT MIXR WIND) or geostrophic moisture flux divergence (SDVR MIXR GEOS). Forecasts of model precipitable water are available (PWAT, PWAI).

DWPT
(SCALAR) Displays contours of dew point temperature for those vertical levels where mixing ratio and temperature are available. Contoured in units of degrees Celsius (C). A useful parameter is to compute the difference between the temperature and the dew point fields: SDIF TEMP DWPT - a field of dew point depressions. This field can be compared with observed upper air moisture data typically plotted as dew point depressions.

DWPK
(SCALAR) Displays contours of calculated dew point temperature wherever mixing ratio and temperature are available in units of degrees Kelvin (K). See also DWPT.

MIXR
(SCALAR) Displays contours of mixing ratio in units of grams of water vapor per gram of dry air (i.e., g/g). The mixing ratio is the ratio of the mass of water vapor present to the mass of dry air containing the vapor. The mixing ratio can be displayed for any vertical level. See also SMIX, SPFH, and RELH.

(HINT: although the units for the mixing ratio are in grams/gram, a display of gridded mixing ratios might have contour labeled "8" or "14", which can be thought of in the more traditional mixing ratio units of grams H2O per kilogram (g/kg) of dry air. But for any diagnostic calculations, units of g/g will be used internally.)

PWAI
(SCALAR) Displays contours of model-based precipitable water fields. Units are in inches of liquid water equivalent. See also PWAT.

PWAT
(SCALAR) Displays contours of model-based precipitable water fields. Units are in millimeters of liquid water equivalent. See also PWAI.

RELH
(SCALAR) Displays contours of relative humidity (RH) in percent at any specified forecast hour and vertical level. The relative humidity is computed by dividing the mixing ratio MDCR by the saturated mixing ratio SMDC RH can be displayed for any vertical level that has either RELH or SPFH listed for that level in the data listing. Entering the command sequence: SDVD MDCR SMIX computes the RH just as if you typed in RELH for some vertical level.
RELH can also be displayed on an isentropic surface from the interpolated mixing ratio data for that surface. NOTE: the RH field computed on isentropic surfaces where the air is extremely dry will produce unrealistic values of RH greater than 100 percent. In these cases use the MIXR to see the value of moisture on that surface.

SDEF
(SCALAR) Displays contours of the mixing ratio saturation deficit in units of grams of water vapor per gram of dry air (g/g) for forecast hours/vertical levels where mixing ratio or specific humidity are available. The field of SDEF is simply the scalar difference between the saturated and unsaturated mixing ratios (i.e., one could compute the same thing by entering the command: SDIF SMIX MIXR).

SMIX
(SCALAR) Displays contours of saturated mixing ratio in units of grams of water vapor per gram of dry air (i.e., g/g). The saturated mixing ratio can be displayed for any vertical level. See also MDCR.

SPFH
(SCALAR) Displays contours of specific humidity in units of grams of water vapor per gram of dry air (i.e., g/g) and is virtually identical to MIXR. Specific humidity is only available for those levels where "SPFH" is explicitly listed in the gridded data listing.

- PRECIPITATION FIELDS COMMANDS

Quantitative precipitation forecasts (QPFs) output from various models are displayable in WINGRIDDS using one of four commands: TPCI, TPCP, CPCI, and CPCP. The commands beginning with TP.." denote the Total precipitation field, while those beginning with "CP.." denote only that portion of the precipitation resulting from a model's particular Convective parameterization. The units of precipitation are available in either millimeters or inches.

The other important consideration when viewing precipitation fields is the time interval they represent, i.e., are you looking at 6-hourly or 12-hourly accumulated precipitation fields. Unfortunately, this information is not included in the grids themselves. However, in all instances, whenever precipitation output is displayed at any forecast hour that is an even multiple of 12 (e.g., F00, F12, F24, F36, F48, F60, etc.), then the field displayed contains a 12-hour accumulated precipitation amount (ending at that forecast hour). For the mesoscale model outputs, there are 6-hourly accumulated precipitation totals available at forecast hours: F06, F18, F30, and F42.

The precipitation commands are described below.

CPCI
(SCALAR) Displays contours of the portion of the total precipitation field based on the model's convective parameterization scheme in units of inches. The valid time interval for accumulation is either 6 or 12 hours. See also CPCP, TPCI, and TPCP.

CPCC
(SCALAR) Displays contours of the portion of the total precipitation field based on the model's convective parameterization scheme in units of centimeters. The valid time interval for accumulation is either 6 or 12 hours. See also CPCP, TPCC, and TPCP.
CPCP
(SCALAR) Displays contours of the portion of the total precipitation field based on the model's convective parameterization scheme in units of millimeters. The valid time interval for accumulation is either 6 or 12 hours. See also CPCI, TPCI, and TPCP.

TPCI
(SCALAR) Displays contours of the total precipitation fields in units of inches. The valid time interval for accumulation is either 6 or 12 hours. See also TPCP, CPCI, and CPCP.

TPCC
(SCALAR) Displays contours of the total precipitation fields in units of centimeters. The valid time interval for accumulation is either 6 or 12 hours. See also TPCI, CPCI, and CPCP.

TPCP
(SCALAR) Displays contours of the total precipitation fields in units of millimeters. The valid time interval for accumulation is either 6 or 12 hours. See also TPCI, CPCI, and CPCP.

**- SCALAR and VECTOR DIAGNOSTIC COMMANDS

WINGRIDDS offers a variety of diagnostic commands to manipulate gridded data fields. Both scalar data (e.g., temperature, moisture fields) and vector quantities (e.g., wind) can be manipulated. Remember that in WINGRIDDS a 'scalar' data field is any contoured field (like temperature); a vector field is plotted as arrows (or barbs). What is meant by "manipulate" is to perform some operation on one or more scalar and/or vector fields. Examples of gridded data manipulation include:

* adding two scalar fields together;
* determine the vector difference between the total wind and the geostrophic component (i.e., compute ageostrophic winds);
* multiplying a scalar field by a constant;
* taking the negative of a scalar field;
* taking the square root of a field;
* multiply the x- and y-components of a vector by a constant;
* compute the Sine of the wind direction.

Although it may not be readily obvious, there are many benefits to manipulating the gridded fields. For example, if you want to compute a difference in mean sea level (MSL) pressures between two forecast times, this can be readily done (see TDIF or SDIF).

Another example is any WINGRIDDS user can (with some practice!) transform mathematical equations of meteorological quantities into displayable contoured (or vector) fields. For example, the equation to compute the quasi-geostrophic "Q-vectors" discussed in the meteorological literature can be coded into a command file. Invoking this command file will produce a grid of Q-vectors at a given vertical level (or layer). The command file "QVEC.CMD" included with WINGRIDDS does such a task. Other quantities, like scalar frontogenesis, various stability parameters such as the K-index, total-totals, and more esoteric quantities, like depicting kinematic deformation of the wind field in the form of the "axii of dilatation", can be all be "programmed" and put in command files for ready access (see the section on COMMAND FILES).
In this reference manual, the commands to manipulate scalar and vector fields will be discussed in two separate sections, although functionally, many of the commands do the same thing. Contrast computing the difference of two scalar fields (see SDIF) with taking the difference between two vectors (see VDIF). The first section after this introduction describes commands to manipulate and/or produce scalar fields. This first section includes those "scalar diagnostic" functions (e.g. computing advection or divergence) that result in scalar (i.e., contoured) fields. A following section describes those commands for manipulating and producing vector quantities. The second section includes those "vector diagnostic" commands that produce a field of vectors as a result.

**- SCALAR DIAGNOSTIC COMMANDS

A) Scalar Addition, Subtraction, Multiplication, Division

SADC [1-4 digit value, scalar]
(SCALAR) Add a constant value to the specified scalar field and display a contoured field of the resultant summation. For example, the commands "SADC 10 TEMP" will add a constant value of 10 to the scalar temperature field at a given level. The constant is optional; if it's not given the user is asked to enter one.

There are number of ways the constant for this command can be entered. The discussion given in this paragraph is applicable for all WINGRIDDSS scalar diagnostic commands requiring constants and will not be repeated (see SMLC, SSBC, SDVC). The constant can be entered using one, two, three, or four digits, and a decimal can be used, but the constant cannot be longer than 4 digits!. Valid constants are: "2", "1000", "98.4". Negative values are entered with a leading minus sign (e.g., "-23"). Scientific notation can be entered with an exponent in "E-format. Examples of valid E-format constants are: "3E3", "1E+5", "5E-7" "52E5".

See also SSBC.

SAVR [2 scalars]
(SCALAR) Calculates the arithmetic scalar grid average for the two scalar fields and display the resultant average as a contoured field. The arithmetic average method simply sums the two scalar fields together and divides by 2. For example, the command string to compute the average value of the 12- and 24-hour forecast temperature fields given by:

```
SAVR TEMP F24 TEMP F12
```

is identical to the command string:

```
SDVC 2 SSUM TEMP F24 TEMP F12
```

SDIF [scalar1 scalar2]
(SCALAR) Subtracts the "scalar2" field from the 'scalar1' field and displays the resulting difference as a contoured field. For example, the command string to compute the dew-point depression at some level is: "SDIF TEMP DWPT". The order that the two scalar fields is entered is important; the two scalar fields are NOT commutative. See also SSUM.

SDVC [1-4 digit value, scalar]
(SCALAR) Divide the scalar field by a user-specified constant and display a contoured field of the resultant division. For example, the command line: "SDVC -2 TEMP" will divide the scalar temperature field at a given level by -2. Entering the constant is optional; if it's not given the user is asked to enter one. Refer to the discussion in SADC for possible ways to enter the constant to multiply by.
SDVD [scalar1 scalar2]
(SCALAR) Divides the "scalar1" grid field by the "scalar2" grid field and displays the resultant division as a contoured field. For example, the command line: "SDVD MDCR SMXR" will divide the mixing ratio (MIXR) by the saturated mixing ratio (SMIX). If this result is then multiplied by 100 (e.g., "SMLC 100 LAST"), the field of relative humidity is obtained.

SMLC [1-4 digit value, scalar]
(SCALAR) Multiply a constant value times the specified scalar field and display a contoured field of the resultant multiplication. For example, the command "SMLC .8 RELH" will multiply the constant value of 0.8 times the scalar relative humidity (RH) field at a given level; in essence, a way of taking 80 percent of the given RH field. The constant is optional; if it's not given, the user is asked to enter one. Refer to the discussion in SADC for possible ways to enter the multiplication constant.

SMLT [2 Scalars]
(SCALAR) Multiplies the two specified scalar grid fields together displaying the resultant multiplication as a contoured field.

SSBC [1-4 digit value, scalar]
(SCALAR) Subtract a specified constant from a scalar field and display a contoured field of the resulting difference field. For example, the command: "SSBC 1E-5 DVRG WIND" subtracts a constant value of 1 x 10^-5 from the divergence of the total wind field. Refer to the discussion in SADC for possible ways to enter the constant to be subtracted.

SSUM [2 Scalars]
(SCALAR) Sums the two specified scalar grid fields and displays the resultant summation as a contoured field.

STND [2 scalars]
(SCALAR) Calculates the time tendency for the two scalar grid fields. A time tendency is simply the arithmetic average of the two scalar fields divided by the time interval specified between FHR1 and FHR2, in inverse seconds. For example, the scalar time tendency of the 12- and 24-hour temperature fields at some vertical level is given by:

```
STND TEMP F24 TEMP F12
```

which is exactly equivalent to the command: `TEMP TTND SFHS 12 24`

Miscellaneous Scalar Diagnostic Commands

The units for both of the above expressions would be in degrees Celsius per sec. The "per sec" units can be converted to "per hour" using HRLY or to "per 24-hour day" using DALY. See also TTND, VTND, HRLY, DALY, SFHS, FHR1, FHR2.

ABSV [Scalar]
(SCALAR) Calculates the absolute value of scalar grid.

INV1 [Scalar]
(SCALAR) Finds the inverse of a scalar quantity up to a maximum of 1. See INVS.
INVS [Scalar]

(SCALAR) Finds the inverse of a scalar quantity. The inverse is simply one divided by that quantity. See also INV1.

SNEG [Scalar]

(SCALAR) Finds the negative of a scalar grid. It is equivalent to multiplying a scalar grid by-1.

B. Trigonometric Scalar Functions

There are six trigonometric functions defined in mathematics. They are referred to as the sine, cosine, tangent, cotangent, secant, and cosecant functions. Three of these functions are available in WINGRIDDSS to compute the sine (SINE), cosine (COSN), and tangent (TNGT) from a scalar grid assumed to be degrees. These three basic "trig" functions can be combined using the fundamental trigonometric identities to give the other trigonometric functions (secant, cosecant, and cotangent), as given by:

\[
\begin{align*}
\text{cosecant} & = \frac{1}{\text{sine}} \\
\text{secant} & = \frac{1}{\text{cosine}} \\
\text{cotangent} & = \frac{1}{\text{tangent}}
\end{align*}
\]

COSN [Scalar]

Calculates the trigonometric cosine of a scalar grid. The scalar grid must be in degrees. See also, SINE, TNGT, WDRC.

SINE [Scalar]

(SCALAR) Calculates the trigonometric cosine of a scalar grid. The scalar grid must be in degrees. See also, COSN, TNGT, WDRC.

TNGT [Scalar]

(SCALAR) Calculates the trigonometric tangent of a scalar grid. The scalar grid must be in degrees. See also, SINE, COSN, WDRC.

C. Other Scalar Mathematical Functions

Several miscellaneous (but useful) functions that act on scalar grid fields are available in WINGRIDDSS. These are the gradient or "del" operator (GRAD, MGRD, NGRD), and the horizontal gradient operators DSDX and DSDY. These functions are quite useful in computing several meteorological diagnostic quantities such as advection (see ADVT)

DSDX [Scalar]

(SCALAR) Calculates the gradient of the scalar field in the X (i.e., east-west) direction using second order finite differencing. An example is DSDX TEMP which, in essence, is the partial derivative of the temperature field with respect to the X direction, or mathematically:

\[
\frac{dT}{dX}
\]

DSDY [Scalar]

(SCALAR) Calculates the gradient of the scalar field in the Y (i.e., north-south) direction using second order finite differencing. An example is DSDY MIXR which, in essence, is the partial derivative of the moisture field with respect to the Y direction, or mathematically:

\[
\frac{dY}{dX}
\]
GRAD [Scalar]
(VECTOR) Computes the two-dimensional (X,Y) horizontal gradient of the specified scalar field and outputs the result as a vector field. The definition of the gradient or "del" operator is in the horizontal plane):

\[\frac{dX}{dY} \]

where \(dX \) and \(dY \) refer to the positive X and Y directions, respectively. Geometrically, GRAD yields the horizontal "ascendent" vector; a vector at right angles to the horizontal isopleths of the scalar quantity and directed (pointing) toward higher values of the scalar. The WINGRIDDSS function NGRD (see NGRD) operating on a scalar field yields a vector at right angles to the contours but directed toward lower values of the scalar, which is mathematically equivalent to the "descendent" vector. NGRD is also called the "negative ascendent" in some texts.

The length of each vector produced by GRAD is proportional to the magnitude of the gradient of the scalar. In other words, the longest vector occurs in places where there is a close packing of contour lines gradient. See also MGRD, NGRD, DSDX, DSDY.

MGRD [scalar]
(SCALAR) Computes the magnitude of the gradient of any scalar field and displays the resultant magnitude as contours. The closer the contours are packed together, the larger the value of the magnitude of the gradient. For example, MGRD TEMP contours the magnitude of the gradient of the scalar temperature field. An equivalent field would be given by the commands "MAGN GRAD TEMP". Units of the magnitude of the gradient of a scalar are in the units of the scalar divided by distance (meters). See also GRAD, NGRD, MAGN.

NGRD [scalar]
(VECTOR) Displays in vector form the negative gradient of a scalar field. For example, the command "NGRD TEMP" displays a field of vectors at right angles to the contours of the scalar but directed toward lower values, mathematically equivalent to the "descendent" vector. NGRD is also called the "negative ascendent". Another way to produce this vector is to precede the GRAD command with the command VNEG, as in "VNEG GRAD TEMP". See also GRAD, MGRD, VNEG.

VECTOR DIAGNOSTIC COMMANDS

A vector is a quantity that has attributes of magnitude and direction. The most common vector in meteorology is the wind which is composed of a direction attribute and a speed or velocity attribute. A knowledge of vectors and how they are manipulated in meteorology is fundamental to understanding the kinematics of the atmosphere.

WINGRIDDSS offers a host of commands to manipulate vectors and to combine vectors and scalars into useful diagnostics (e.g., moisture convergence, temperature advection, etc.). This section documents the following WINGRIDDSS commands that manipulate vectors. These commands include vector addition (VSUM), subtraction (VDIF), multiplication (VMLT), division (VDVD), advection (ADVT), divergence (DVRG) and scalar flux divergence (SDVR), the dot product (DOTP) and cross product (CROS), both absolute vorticity (VORT) and relative vorticity (RVRT), etc.
A. Vector Addition, Subtraction, Multiplication, Division

VADC [1-4 digit value, vector]
(VECTOR) Add a constant value to the specified vector field and displays a vector field of the resultant summation. For example, the command "VADC 5 GEOS" adds a value of 5 m/s to both the X- and Y-components of the geostrophic wind at a given level. Hence, if the geostrophic wind at a gridpoint was 270 degrees at 10 m/s, the new geostrophic wind would be west-southwesterly (251 degrees) at about 15.8 m/s. (Remember: the constant is added to BOTH the X- and Y-wind components). Entering the constant immediately after the command is optional; if it's not given the user is asked to enter one.

NOTE: adding a constant value to a vector WILL change the direction of that vector!

There are number of ways the constant for this command can be entered. The discussion given in this paragraph is applicable for all WINGRIDDS vector diagnostic commands requiring constants and will not be repeated (see also VMLC, VSBC, VDVC). The constant can be entered using one, two, three, or four digits, and a decimal can be used, but the constant cannot be longer than 4 digits I. Valid constants are: "2", "1000", "98.4". Negative values are entered with a leading minus sign (e.g., ",-23"). Scientific notation can be entered with an exponent in "E-format". Examples of valid E-format constants are: "3E3", "1E+5", "5E-7 52E5".

VAVR [2 vectors]
(VECTOR) Calculates the arithmetic vector grid average for the two vector fields and display the resultant average as a contoured field. The arithmetic average method first sums the X- and Y-components of the vector fields together and divides these by 2. For example, the command string to compute the average value of the 1000 mb and 500 mb forecast wind fields given by:

"VAVR WIND 1000 WIND 500"

is identical to the command sequence:

"CONT SDVC 2 SSUM YCMP WIND 1000 YCMP WIND 500
VDVC 2 SSUM XMCP WIND 1000 XMCP WIND 500"

VDIF [vector1 vector2]
(VECTOR) Vectorially subtracts "vector2" from "vector1" and displays the resulting difference as a new vector. For example, the command string to compute the vector difference between the 1000 mb geostrophic wind and the 500 mb geostrophic wind (i.e., the thermal wind) is:

"VDIF GEOS 500 GEOS 1000".

Note in the above command string that the second vector (GEOS 1000) is subtracted from the first vector (GEOS 500). An equivalent form of the above command is GEOS LDIF. Also, the order that the two vectors are entered IS important. Taking the difference of two vector fields is NOT commutative. See also VSUM.

VDVC [1-4 digit value, vector]
(VECTOR) Divide the vector field by a user-specified constant and displays the resultant vector field. For example, the command line: "VDVC 3 WIND" divides each X- and Y-component of the wind field at a given level by 3. Entering the constant immediately next to the command is optional; if it's not given the user is asked to enter one. Refer to the discussion in VADC for possible ways to enter the multiplication constant.
VDVD [vector1 vector2]
(VECTOR) Divides the “vector1” X- and Y- components by the “vector2” X- and Y- components and displays the resultant division as a new vector. See also VMLT, VDVC.

VMLC [1-4 digit value, vector]
(VECTOR) Multiply a constant value times the specified vector field and displays the resultant vector field. Multiplying the vector by a positive scalar value simply multiplies the length of the vector without affecting the direction. The command "VMLC .5 WIND" multiplies both the X- and Y-components of the total wind by 0.5 (1/2) at a given level. This results in a wind field having the same direction as before but only half the magnitude (See MAGN). If the scalar constant is negative, then not only is the vector’s magnitude affected, but the vectors are reversed in direction. The constant is optional; if it’s not given, the user is asked to enter one. Refer to discussion in VADC for possible ways to enter the constant. See also VDVC, VMLT.

VMLT [vector1 vector2]
(VECTOR) Multiplies the two specified vector fields together and displays the resultant multiplication as a new vector. The X- and Y-components are multiplied to together to create this new vector. See also VDIF, VMLC.

VSBC [1-4 digit value, vector]
(VECTOR) Subtract the specified constant from both the X- and Y- components of the vector field and displays a vector of the resulting difference field. For example, the command: "VSBC 5 WIND" subtracts a constant value of 5 from both the X- and Y-components of the vector total wind. The resultant vector will have a new direction. Refer to the discussion in VADC for possible ways to enter the constant to be subtracted. See also VDIF.

VSUM [vector1 vector2]
(VECTOR) Vectorially sums the two specified vectors grid fields and displays the resultant vector summation. The scalar X- components of vector1 and vector2 are summed and a similar summation of the Y-components, with the resultant X- and Y- scalar components placed on the data stack to create the new summed vector. For example, if vector1 represents a wind of 20 knots from the west (270°) and vector2 represents a wind of 30 knot also from the west, then the result of "VSUM" of these two winds results in a new wind of 50 knots from the west. See also VADC.

VTND [vector1 vector2]
(VECTOR) Calculates the time tendency for the two vector fields. A vector time tendency is vector average of the two vector fields divided by the time interval specified between FHR1 and FHR2, in inverse seconds. For example, the vector time tendency of the 12- and 24-hour wind fields at some vertical level is given by:

```
VTND WIND F24 WIND F12
```

which is exactly equivalent to the command:

```
WIND TTND SFHS 12 24
```

The units for both of the above expressions would be in meters/sec per sec. The "per sec" units can be converted to "per hour" using HRLY or to "per 24-hour day" using DALY. See TTND, STND, HRLY, DALY, SFHS, FHR1, FHR2.
B. Other vector functions

CRSP [2 Vectors]
(SCALAR) Calculates and displays the magnitude of the vector cross product of the two specified vectors. The cross product is defined as the magnitude of the first vector times the magnitude of the second vector and multiplied by the cosine of the angle between the two vectors:

\[A \times B = |A| |B| \cos \theta \]

DOTP [2 Vectors]
(SCALAR) Calculates and displays the scalar "dot" product of the two specified vectors. Since the dot product operation is commutative, the vectors can be given in either order. The scalar dot product has no direction. The scalar dot product is defined as the magnitude of the first vector times the magnitude of the second vector and multiplied by the sine of the angle between the two vectors:

\[A \cdot B = |A| |B| \sin \theta \]

See also ADVT, CRSP, DVRG.

DVRG [vector]
(SCALAR) Calculates the mathematical divergence of the vector quantity defined as the dot product of the gradient operator dotted with the vector quantity:

Divergence \(\nabla \cdot [\text{vector}] \)

Positive values indicate divergence of the vector; negative values indicate convergence. The command "DVRG WIND" displays contours of the divergence of the wind at a given forecast level and hour. Consult a dynamic meteorological textbook (e.g., Bluestein, 1992) for a more complete explanation of divergence.

See also DOTP, GRAD, SDVR, WDVR.

GVRT
(SCALAR) Generates the absolute vorticity using the geostrophic wind displaying the resultant field in contoured form. The GVRT command is equivalent to the commands: VORT GEOS. For a more complete treatment of vorticity, refer to the discussion for the VORT command.

See also GEOS, VORT, WVRT.

WDVR
(SCALAR) Calculates the divergence of the total wind field and displays the result as contours of the divergence of the wind at a given forecast level and hour. Positive values indicate divergence of the wind; negative values indicate convergence. The command "DVRG WIND" does the same thing as WDVR. See also the discussion on divergence in DVRG.

C. Combined vector/scalar functions

ADVT [Scalar and Vector]
(SCALAR) Calculates the advection of the scalar quantity by the vector quantity. There are two ways the command can be entered: either normal or functional. Using temperature advection by the total wind as an example, the commands can be entered in the normal manner like:
ADVT TEMP WIND

or in a functional format:

ADVT [TEMP,WIND]

Both forms produce identical results for temperature advection. The mathematical equation that is computed for advection (using temperature as the quantity advected) is:

Advection = -V*7T

As an example, an equivalent sequence of WINGRIDDS commands for computing temperature advection by the total wind is:

SNEG DOTP WIND GRAD TEMP

which mathematically is the negative of the scalar dot product of the total wind "dotted" with the gradient of temperature. For the adventurous, another way to codify in WINGRIDDS the temperature advection by the total wind is:

SNEG SSUM SMLT XCMP WIND DSDX TEMP SMLT YCMP WIND DSDY TEMP

There are several "pre-programmed" advection functions to advect various quantities by the total wind: temperature (TADV), mixing ratio (QADV), and pressure (PADV).

PADV
(SCALAR) Displays contours of the field of pressure advection using the total wind. See discussion for ADVT.

QADV
(SCALAR) Displays contours of the field of mixing ratio advection using the total wind. See discussion for ADVT.

SDVR [Scalar and Vector]
(SCALAR) Calculates the flux divergence of the scalar and vector quantities. The mathematical scalar flux divergence of the vector quantity is defined as the dot product of the gradient operator dotted with the scalar-vector quantity:

Scalar Divergence = V • [scalar x vector]

Positive values of scalar flux divergence occur where the wind field acting on the gradient of the scalar is tending to decrease the scalar quantity; negative values occur where winds are tending to increase the scalar quantity. The scalar flux divergence command combines the advective portion of wind and the divergent/convergent portion of the wind acting on the scalar quantity. Mathematically, scalar divergence can be written as the sum of the two aforementioned factors (i.e., advective part and divergent/convergent part) as:

Scalar Divergence = (V -V q) + q (V • V)

See also DOTP, DVRG, FLUX.
TADV
(SCALAR) Displays contours of the field of temperature advection using the total wind. See discussion for ADVT.

FLUX [a Scalar and a Vector]
(VECTOR) Displays a vector representation of the product of a scalar and the input vector. These vectors, referred to as "flux" vectors, have the same direction as the input vector. However, the original vector's magnitude has been multiplied by the scalar value at that point. A "flux" can be viewed as the amount of some quantity (e.g., moisture) transported by the vector (say, wind) across a given area. The FLUX command also resets the wind display to AROW format.

As an example, the moisture flux at 1000 mb is computed using the command "FLUX MDCR WIND 1000". This produces a field of vectors whose direction are everywhere the same as the wind at 1000 mb but whose length is proportional to the amount of 1000 mb moisture at a grid point. Assuming that the 1000 mb moisture can vary by an order of magnitude (i.e., dry -1 gr/kg vs wet -10 gram/kg air), while the 1000 mb wind varies by less than an order of magnitude (i.e., <1 m/s to 25 m/s), then the scaling effect from moisture will surpass that due to the magnitude of the wind. Hence, the 1000 mb moisture flux vectors in areas of high moisture content air but relatively weak winds will generally be longer relative to those flux vectors in low moisture content air but either weak (or strong) winds. (NOTE: taking the divergence of the moisture flux (at any level) yields the often-desired field of moisture flux divergence (i.e., DVRG FLUX MDCR WIND), which, equivalently can be computed by "SDVR MIXR WIND"). See also AROW DVRG, SDVR.

MAGN [Vector]
(SCALAR) Calculates the magnitude of the vector displaying the result as a contoured scalar field. If the vector is a wind vector, than the wind magnitude is equivalent to the field of isotachs. The vector does not have to be a wind. See also MGRD, SPED, SPKT, WSPD, WSPK.

RVRT [vector]
(SCALAR) Calculates the horizontal relative vorticity of the specified vector. The vector given is usually a wind vector (e.g., WIND, GEOS, etc.). The relative vorticity of the total wind is given by the command "RVRT WIND". The units of relative vorticity are in inverse seconds, with typical values on the order of 10-5 sec-1.

The actual mathematical quantity calculated via a first order finite difference technique is:

Relative Vorticity
\[\frac{f}{dX} \frac{dY}{dX} \frac{dX}{dY} \]

The term in parentheses is defined as the relative vorticity of the vector wind, where U and V wind components are in the east-west and north-south directions, respectively. An equivalent way in WINGRIDDS to compute the relative vorticity of the total wind by computing the actual finite difference of the U- and V- wind components is:

SDIF DSDX VGRD DSDY UGRD

See also VORT.
VNEG [vector]
(VECTOR) Displays the "negative" of a vector field. The negative of a vector is a vector having a direction 180 degrees opposite of the specified vector, but having the same magnitude. For example, if a wind vector at some gridpoint points from south to north (i.e., a south wind) then command VNEG WIND results in a vector that points from north to south (i.e., a north wind). See also MAGN.

VORT [vector]
(SCALAR) Calculates the horizontal absolute vorticity of the specified vector. The vector given is usually a wind vector (e.g., WIND, GEOS, etc.). The absolute vorticity of the total wind (i.e. what's plotted on the AFOS and DIFAX 500 mb graphics) is given by the command "VORT WIND". The units of absolute vorticity are in inverse seconds, with typical values on the order of 10^-5 sec^-1.

The actual mathematical quantity calculated via a first order finite difference technique is:

Abs.Vorticity = | -^- |

The first term on the right (in parentheses) is the relative vorticity (see RVRT) of the vector wind, where U and V wind components are in the east-west and north-south directions, respectively. The second term on the right (f) is the Coriolis parameter (see FFFF). An equivalent way in WINGRIDDS to display the absolute vorticity of the total wind is to sum the relative vorticity with the Coriolis force:

SSUM RVRT WIND FFFF

See also GVRT, RVRT, FFFF, WVRT.

WVRT
(SCALAR) Calculates the horizontal absolute vorticity of the specified vector. The vector given is usually a wind vector (e.g., WIND, GEOS, etc.). WVRT is equivalent to the absolute vorticity of the total wind as given by the command "VORT WIND". The units of absolute vorticity are in inverse seconds, with typical values on the order of 10^-5 sec^-1. See discussion in VORT for more details on vorticity. See also GVRT, RVRT.

**- COMMANDS for LAYER AND TIME VALUES

This section documents commands within WINGRIDDS to display or compute quantities involving either the specified layer pair (see LVL1, LVL2) or time pair (see FHR1, FHR2). For example, computing a contoured 1000-500 mb thickness field of geopotential height involves setting the layer values LVL1 and LVL2 to 1000 and 500 mb, respectively (i.e., the command: SLYR 1000 500 does this) and then typing HGHT LDIF at the command line.

Similarly, computations involving the time pair are accomplished by specifying values for FHR1 and FHR2 using the SFHS command and using an appropriate time command (TDIF, TTOT). For example, to compute a contoured time difference field of 500 mb temperature between the 12 and 24 hour forecasts, first set the time pair variables (SFHS 12 24) and then enter the commands TEMP TDIF 500.

A time tendency, as defined in WINGRIDDS, is the arithmetic average (see TAVE) of a scalar or vector quantity taken between the time pairs FHR1, FHR2, and divided by the time interval (in seconds) between FHR1 and FHR2 (see TTND). The default time interval used for time tendencies is (sec'1). This interval can be modified to other units (e.g., hourly - HRLY; daily - DALY; etc.), or any other user-specified value. A time tendency for both scalar and vector fields is available (see STND, VTND, respectively).
Section A describes commands that use the time pair. Section B describes commands involving layer computations.

A. Time pair

TAVE [proceeded by variable]
(SCALAR or VECTOR) Calculates the time average of a variable to the left of the command using the time pairs FHR1 and FHR2. The variable can either be a scalar or vector quantity. If a scalar variable is used, the arithmetic average is computed by dividing the sum of the scalar at times FHR2 and FHR1 by two. If a vector variable is specified, a new vector field is created with each new vector being the arithmetic sum of the u- and v- components at the two specified time pair hours (FHR1, FHR2) divided by two.

The time pairs are set with the command SFHS and default to the initial values specified in the INITGRID.SPC file. The values of FHR1 and FHR2 are found on the default parameters line (the line immediately below the command line).

TAVE+ [proceeded by variable]
(SCALAR or VECTOR) Calculates the time average of a variable to the left of the command using the next available Forecast Hour.

TTOT [proceeded by variable]
(SCALAR or VECTOR) Calculates the time total or sum of a variable to the left of the command using the time pairs FHR1 and FHR2. The variable can either be a scalar or vector quantity. If a scalar variable is used, the arithmetic sum is computed by simply summing the scalar at times FHR2 and FHR1. For example, the command MIXR TTOT contours the sum of the mixing ratios at the forecast hours FHR1 and FHR2. If the variable specified is a vector, then a new vector field is created where each new vector represents the arithmetic sum of the u- and v- vector components at the two specified time pair hours FHR1 and FHR2 divided by two. See also TDIF.

TTOT+ [proceeded by variable]
(SCALAR or VECTOR) Calculates the time total or sum of a variable to the left of the command using the next available Forecast Hour.

TDIF [proceeded by variable]
(SCALAR or VECTOR) Calculates the time difference of a variable to the left of the command using the time pairs FHR1 and FHR2. The variable can either be a scalar or vector quantity. If a scalar variable is used, the arithmetic sum is computed by simply summing the scalar at times FHR2 and FHR1. For example, the command TEMP TDIF contours the resulting difference field between the temperature at the specified level between FHR1 and FHR2. The sense of the difference computed is: [FHR2 • FHR1]. If the variable specified is a vector, then a new vector field is created where each new vector represents the arithmetic sum of the u- and v- vector components at the two specified time pair hours FHR1 and FHR2 divided by two. See also TTOT.

TDIF+ [proceeded by variable]
SCALAR or VECTOR) Calculates the time difference of a variable to the left of the command using the next available Forecast Hour.

TTND [proceeded by variable]
(SCALAR/VECTOR) Calculates the time tendency for variable specified. A time tendency is the arithmetic
average of the variable field at times FHR1 and FHR2 divided by the time interval specified between these
two times. For example, the time tendency of the 24- and 36-hour dew point fields at some vertical level is
given by:

\[\text{DWPT TTND SFHS 24 36} \]

which is exactly equivalent to the command:

\[\text{STND DWPT F24 TEMP F36} \]

The units for both of the above expressions would be in °C per sec. The "per sec" units can be converted
to "per hour using HRLY or to "per 24-hour day" using DALY. See also STND, VTND, TAVE, HRLY, DALY,
SFHS, FHR1, FHR2.

TTND+ [proceeded by variable]
(SCALAR/VECTOR) Calculates the time tendency for variable specified using the next available Forecast Hour.

B. Layer Pairs

LAVE [proceeded by variable(s)]

LYAV
(SCALAR or VECTOR) Calculates the layer average of a variable to the left of the command using the
layer pairs LVL1 and LVL2. The variable can either be a scalar or vector quantity. If a scalar variable is
used, the layer average is computed by dividing the sum of the scalar at the levels LVL1 and LVL2 by two.
If a vector variable is specified, a new vector field is created with each new vector being the arithmetic sum
of the u- and v- components at the two specified layer levels (LVL1, LVL2) divided by two.

For example, the command RELH LAVE computes the arithmetic average of the relative humidity at layer
levels LVL1 and LVL2. This is not the same as a true mean relative humidity between these two levels
typically depicted on standard AFOS and facsimile graphics. A true "mean" RH is calculated by summing
up the individual RH's at every vertical level between the LVL1 and LVL2 layers and then taking a
pressure-weighted average of this sum.

The layer pairs are set with the command SLYR and default to the initial values specified in the
INITGRID.SPC file. The values of LVL1 and LVL2 are found on the default parameters line (the line
immediately below the command line).

See also SLYR, LVL1, LVL2.

LSUM [proceeded by variable(s)]

LADD
LYSM
(SCALAR or VECTOR) Calculates the layer sum of a variable (or variables) to the left of the command
using the layer levels LVL1 and LVL2. The variable can either be a scalar or vector quantity. If a scalar
variable is used, the sum is computed by summing the scalar at layer levels LVL1 and LVL2. For example,
the command SMIX LSUM contours the sum of the saturated mixing ratios at the layer levels LVL1 and
LVL2. If the variable specified is a vector, then a new vector field is created where each new vector
represents the arithmetic sum of the u-and v- vector components at the two specified levels LVL1 and
LVL2.
LDIF [preceded by variable(s)]

LYDF
(SCALAR or VECTOR) Calculates the layer difference of the variable (or variables) to the left of the command using the layer levels LVL1 and LVL2. The variable can either be a scalar or vector quantity. If a scalar variable is used, the difference is computed by subtracting the scalar at layer level LVL1 from that at LVL2. For example, the command TEMP LDIF contours the difference between the temperature at layer LVL2 minus the temperature at LVL1. If the variable specified is a vector, then a new vector field is created where each new vector represents the arithmetic difference of the u- and v- vector components at the two specified levels LVL1 and LVL2.

See also SLYR, LVL1, LVL2, LSUM, LAVE.

**- COMMANDS RELATED TO LIFTING OF LAYERS

WINGRIDDS offers several commands that deal with "lifting". A common example of "lifting" used in forecasting is computing the lifted index. In WINGRIDDS, one can specify the two layers that are used in computing the lifted index and issue a command (LNDX) that computes this temperature difference. In addition, the lifted index is commonly included with the basic gridded data from the model. Typing LIFT displays contours of the model "best" lifted index, which tends to depict the most unstable (i.e., most negative) of the lifted indices. Consult NWS Technical Procedures Bulletin No. 207 for details on the "best" lifted index.

Other commands allow for computing the temperature and pressure of the lifted condensation level (LCL) of parcels originating from some user-specified level (TLCL and PLCL, respectively). In addition, a layer's "pressure deficit" can be computed -that is, the difference between the pressure of the layer and the pressure at which that layer's LCL is reached (see PDEF). Consult a meteorological textbook for definitions of LCL and explanation of parcel theory.

The vertical levels used for lifting can be specified at constant pressure (e.g., 850 mb), sigma or boundary layer level (e.g., S982, B015), or even an isentropic surface (see SLVL, l###, S###, and B###).

LIFT | UFX | > Provides Lifted Index fields without resetting LEVEL

LNDX
(SCALAR) Calculates the "lifted index" (U) between LVL1 and LVL2 and displays the results as a contoured field in units of degrees Celsius. WINGRIDDS uses the standard definition of U, viz., the temperature difference between the temperature a parcel obtains when lifted from some lower level (i.e., LVL1) dry adiabatically until it reaches saturation, then moist adiabatically to some specified upper level (e.g., LVL2 set equal to 500 mb), with the observed (or forecast) ambient mb temperature at the upper level (assuming no mixing or entrainment of environmental air into the parcel)- For example to compute the surface-based U similar to the NGM surface U on AFOS (PIL NMCGPH02L, 04L, etc.), you first set the bottom layer to the lowest sigma layer (S982) and the upper level to 500 mb (500) using the command "SLYR S982 500", then type in LNDX.

See also LIFT, LFTDX, PLCL, TTDE.
PLCL
(SCALAR) Calculates the pressure of the lifted condensation level (LCL) using temperature, moisture, and pressure values taken from the current vertical level (LVL) and displays a contoured field in units of millibars (mb). The LCL is the level at which saturation of an initially unsaturated parcel occurs. See also PDEF, TLCL, TTHE.

PDEF
Calculates the Pressure lift needed for saturation from the LCL

TLCL
(SCALAR) Calculates the temperature at the lifted condensation level (LCL) of parcels having characteristic temperature, moisture, and pressure values taken from the current vertical level (LVL) and displays a contoured field in units of degrees Celsius (°C). The LCL is the level at which saturation of an initially unsaturated parcel occurs. See also PDEF, TLCL, TTHE.

TTHE
Calculates temperature of parcel lifted from bottom to top of layer

**- COMMANDS TO ALTER APPEARANCE OF DISPLAYIED FIELDS AND DATA

A. COLOR

The color of contour lines or alphanumeric data (see DATA) are based on the color palette line and the number of overlays. When the first field is displayed after the screen erases, it will use color 1, which is the left hand-most color on the color bar at the bottom of the screen. Subsequent overlays of fields increment the color by one for each overlay. For example, the command "BKNT/TEMP/HGHT will display the height field first in color one, then the temperature field is overlaid in color 2, the wind barbs in color 3. (NOTE: sometimes this scheme for contour coloring does not work - there is a known bug in the software that cause multiple overlays to be displayed in the same color - normally color 2. Hopefully, a future software will have this bug corrected).

Commands are available to override the default contour colors. They all begin with "CLR" and either a single digit number (1-9 & 0, inclusive) or a single alphabetic letter (A-Z, inclusive). The numbers and letters represent color as depicted in the thin color palette line at the bottom of all WINGRIDDS graphic displays. Solid contours are displayed for all single digit numbers (1-9 & 0) and the letters: A, B, C, E, F. Dashed contours can be displayed by using the letters "G" through "W", inclusive, as in CLRH. Dotted contours can be displayed by using the letters X, Y, or Z.

Note that the command "CLRD" has special meaning in that it is the same color as the map background (i.e., black). When CLRD is used to display a field, it will appear in the background color (i.e., black) and you won't see it. However, if CLRD is used to overlay a field that has previously been displayed, that field will be erased without disturbing the rest of the display area.

Remember that the color palette can be changed by changing the values within the default file PALETTE.CLR.
Solid lines...

CLR1 Override default and use color 1 in palette (Solid).
CLR2 Override default and use color 2 in palette (Solid).
CLR9 Override default and use color 9 in palette (Solid).
CLR0 Override default and use color 10 in palette (Solid).
CLRA Override default and use color 11 in palette (Solid).
CLR6 Override default and use color 16 in palette (Solid).

Dashed lines...

Note: the commands CLRH, CLRI,... through CLRW, inclusive all plot dashed lines -the only difference being in color plotted.

CLRG Override default and use color 1 in palette (Dashed).
CLRH Override default and use color 2 in palette (Dashed).
CLRW Override default and use color 16 in palette (Dashed).

DASH
Sets display mode to plot dashed lines for parameter specified either to the right or left. For example, the commands "DASH TEMP" and TEMP DASH" do exactly the same thing; i.e., they plot the temperature contours as dashed lines. See also DNEG, DPOS.

Dotted lines...

CLRX Override default and use color 14 in palette (Dotted).
CLRY Override default and use color 15 in palette (Dotted). CLRZ Override default and use color 16 in palette (Dotted).

B. CONTOUR AND DATA SMOOTHING

CNSM |KSMO| [integer value] > Changes smoothing (1) on Contours
SMTH > Applies a binomial smoother to the active gridded data
SMOO > Applies a light smoother to the active gridded data
DALY |PRDY| > Converts diagnostic command results from /sec to /day
HRLY |PRHR| > Converts diagnostic command results from /sec to /hour
STOF > Stops display of grid statistics.

STON > Starts display of grid statistics.

WINGRIDDS Automatic Mode

The following discussions describe the operation of WINGRIDDS in *Automatic Mode*.

WINGRIDDS can be run in an automatic mode. Within a batch file or if you are at a Windows Command prompt, you can enter WINGRIDDS a listing of up to 35 PCG Data files a single Command Macro file name. WINGRIDDS will startup, load all the data files in the order they were listed and will execute the command macro file and will then quit. This process is useful for generating WINGRIDDS graphics (a screen save operation) without needing to have a user do it by hand. The screen save commands (SAVS) must be included in the command macro and the command macros cannot require any user intervention or the system will pause waiting for the user to enter the required data.

Remember, if WINGRIDDS is in 4PNL mode and all 4 windows are to be saved as one image, enter the command **ALWN** just before the **SAVS** command.

--- **Automatic Starting WINGRIDDS**

Use the following example to initiate a WINGRIDDS session in *Automatic Mode*:

1. From the MS command line within the WINGRIDDS directory or within a batch file, enter:

 c:\ WINGRIDDS > WINGRIDDS JL030312.ETA211 TEST.CMD

 All commands are separated by spaces and the last entry **MUST** be the name of a single command macro file name with the .CMD extension.
Online Help

There are four (4) different types of help functions within WINGRIDDS for the user to utilize in the operation of WINGRIDDS.

-- Help Menus
 This menu option shows the Macro Help and WINGRIDDS and GRIB documentation.
-- Macro Help

All Command Macro files *should* have a help created to go along with the macro to explain in detail what the macro is doing and what data and input it expects. See the figure below:

With the Macro Help dialog, the user enters the 4-character name of the help file (which should be the same as the macro name) and click 'Search' or hit the [Enter] key. The program will search for that macro help file name and, if found, display the contents. If no file is found, the user will be notified.

These macro help files are stored in the 'Help' directory of the WINGRIDDSS program and are simple text files with the file name extension '.hlp'. If any user creates a new command macro, they are encouraged to create a corresponding help file for other users to use.

-- WINGRIDDSS Documentation
Opens up the WINGRIDDSS User Guide within Adobe Acrobat Reader or other PDF file viewer.

-- GRIB1 & GRIB2 Documentation
Opens the GRIB 1 or GRIB 2 Documentation with the default HTML viewer.
Customizing the WINGRIDDSS System

You can customize the basic operation of WINGRIDDSS by modifying the files in the `\WINGRIDDSS\USER` directory. Unless otherwise specified, all files discussed in this section reside in the `\WINGRIDDSS\USER` directory. Many files contain internal documentation that describes each item and its range of acceptable values. It is **IMPERATIVE** that you make the data entries at the specified line and column of the file.

Note: The documented files identify a line number and an entry number for each data entry. The line position of an entry should not be changed.

-- WINGRIDDSS Configuration

Many new improvements have been added to this version of WINGRIDDSS and several underlying details have been changed in how this version of WINGRIDDSS stores configuration data verses how WINGRIDDSS v2.0 did. The `WINGMODE.DAT` file is now no longer used and has been replaced by `WINGCFG.DAT`. However, `WINGCFG.DAT` is not meant to be directly modified by the WINGRIDDSS user as it was with WINGCFG. Now, within WINGRIDDSS, a ‘Properties’ menu and dialog has been created for the user to manage the look-and-feel of WINGRIDDSS. The new menu entry looks like this:

<table>
<thead>
<tr>
<th>File</th>
<th>Products</th>
<th>Specs</th>
<th>Display</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download GRIB Files</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Download Observation Files</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Download Frontal Position Files</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert WAWS GRIB Files</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert Non-WAWS GRIB Files</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert Observation Files</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete WAWS GRIB Files</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete Regular GRIB Files</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete MOS GRIB Files</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete Observation Files</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete Frontal Position Files</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete Processed Data File</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open New Processed Data File</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Processed Data File</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List Processed Data File Contents</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The ‘Properties’ dialog is a tabbed dialog with eight (8) different sections which will control the way WINGRIDDSS looks and operates. These sections will be covered in detail below.
This WINGRIDDs Contour Color tab controls the colors of the individual contour colors which are shown across the bottom of the screen. The individual Red-Green-Blue (RGB) values are adjustable between 0-255 either through the Up/Down arrows or typing directly in each window. The color patch on the right is dynamic and will reflect the current RGB values. The 'Color' buttons open a color select dialog which will be covered later.
The WINGRDDS Surface/Upper Air Station Colors dialog controls the way the surface and upper-air station plots look. The numbers to the left of the parameters are associated with the parameter locations when plotted. The color selection is as explained before.
The WINGRIDDSS Data Directories dialog allows the user to manage where raw and processed data is stored. The user can either type directly in the individual windows or click the 'Select' button which opens a graphical directories dialog which is shown below.

The WINGRIDDSS Data Directories dialog allows the user to manage where raw and processed data is stored. The user can either type directly in the individual windows or click the 'Select' button which opens a graphical directories dialog which is shown below.
This Directories Dialog pops up whenever the user clicks a 'Select' button. This allows the user to graphically roam and select the desired directory.
This dialog controls the look and feel of all of the sounding displays. The colors are controlled as with the other color selections. The Check-boxes down the left side either enable or disable the individual parameters as to whether they are displayed on the screen. The colors of the Wind Barbs/Arrows are controlled in the Hodograph Colors dialog shown next.
This dialog controls the look and feel of the Hodograph display. The colors are controlled as with the other color selections. The Wind colors are also reflected on the Sounding displays. The 'Hodograph Wind Ring Settings' section define whether the rings on a Hodograph are automatically adjusted to the maximum wind speed on a specific display or if the wind rings are fixed regardless of the maximum wind speeds. When the Hodograph is animated, the rings could change with every forecast hour causing the display appearance to jump around. Now, if the wind speed scaling is set to 'Manual' the speed rings will be fixed to the setting within the window which is in meters-per-second. If there are wind speeds greater than the fixed setting, they will be drawn beyond the hodograph border & will not be seen.
This dialog controls the look and feel of all of the Streamline displays.
This dialog controls the default behavior of other WINGRIDDS display issues. The colors are controlled as with the other color selections. The buttons within each border show that only one of the selections can be selected. The colors at the bottom control the default maximum/minimum color values associated with the gradient displays.
This dialog controls the look and feel of all of the WINGRIDDS Map and Cross/Time Section displays as well as Custom Map Navigation Startup settings. The colors are controlled as with the other color selections.
Users have the ability for WINGRIDDSS to startup with a fixed window size other than the Full-Window. The user can choose the window height & width in pixels to allow easier Web page creation.

Users have the ability to always force NGRB2PCG32 to process in old-file format when the check-box is checked.

There are radio-buttons to switch between 2 different contour labels styles: Whole Integer (Classic) or Floating Point/Exponential Notation. When a button is selected, that will be the contour labeling mode for operations.
Whenever a ‘Color’ button is pressed, the Color dialog is displayed and the user can select a customized color for the specific parameter through either selecting a ‘Basic’ color, ‘Custom’ color or dragging the mouse in the rainbow window or typing the specific RGB values or Hue-Saturation-Luminance values. Press ‘OK’ to accept or ‘Cancel’ to reject any selection.
-- Model Origination and Flight Levels for Labels

The file, WINGLBL.USR, provides information that WINGRIDDS uses to customize the labels which describe output from the products (refer to 'Defining Products'). The file contains the model and plot origination for the LFO# label command. It also contains a corresponding list of pressure levels (hPa) and flight levels for the LFL# label command. Refer to the file for a description of each item and its acceptable values. A sample file is shown below.

............... Begin file WINGLBL.USR
'DOC/NOAA/NWS WAFC-WASHINGTON'
LINE 1 (Entry 1) MODEL AND PLOT ORIGINATION
THE TEXT IS DISPLAYED IN THE PLOT LABEL WHEN THE LFO# COMMAND IS USED. THE TEXT MUST BE ENCLOSED IN QUOTES.

850,700,500,400,300,250,200,150,100, 70, -1,-1,-1,-1,-1
050,100,180,240,300,340,390,450,530,450, -1,-1,-1,-1,-1
LINE 7 (Entry 2) LIST OF PRESSURE LEVELS (UNITS=hPa).
LINE 8 (Entry 3) LIST OF FLIGHT LEVELS THAT CORRESPOND TO THE PRESSURE LEVELS IN LINE 7.
THE TEXT IS DISPLAYED IN THE PLOT LABEL WHEN THE LFL# COMMAND IS USED. EACH VALUE MUST BE SEPARATED BY A COMMA.
VALUES FOR ALL 15 LEVELS MUST BE ENTERED. A VALUE OF -1 INDICATES THAT NO VALUE IS DEFINED FOR THAT POSITION. ALL THE UNDEFINED POSITIONS MUST BE AT THE END OF THE LIST AND MUST CONTAIN -1.
............... End file WINGLBL.USR

-- Initial Pressure Levels and Forecast Hours

When WINGRIDDS starts, the level and time specifications are set to the default values defined in the file INITGRID.SPC.

Line 1 Pressure level, vertical layer, forecast hour, and time range are defined on line 1 of the file. Each of the 6 fields has a length of 4 characters.

Line 2 The pressure levels used for time-section and cross-section plots are defined on line 2 of the file. A maximum of 19 pressure levels can be entered. The number of pressure levels entered (field 1) has a length of 2 characters and can have a value between 1 and 19. Each of the pressure level fields has a length of 4 characters. The number of pressure level fields you actually enter must agree with the number of levels you specify in field 1.

Line 3 The forecast hours used for time-section plots are defined on line 3 of the file. A total of 19 forecast hours MUST be entered. If you wish to define fewer hours, the remaining values must be set to zero. The number of hours defined (field 1) has a length of 2 characters. Each of the hour values (fields 2-20) has a length of 4 characters. The increment between selected hour fields (field 21) has a length of 2 characters. This increment determines which of the defined hour fields will actually be used by WINGRIDDS for time-section plots. Refer to 'Changing Forecast Hours for Time-section Plots' for a discussion of the effect these values have on the plot display.

Each line of the file must begin in column 1. Values must be right justified within their field. There are no spaces between the fields. Numerical values are expressed as integers with no decimal point.
Below is a sample **INITGRID.SPC** file. The lines are formatted as described above.

```
2501000 500 12 0 24
101000 850 700 500 400 300 250 200 150 100
13 36 33 30 27 24 21 18 15 12 09 06 03 00 00 00 00 00 00 2
```

This second example contains the same data as the previous sample file, but with the field positions indicated below each line for clarity. The lines are grouped into pairs. The first line is the file entry. The second line indicates the field positions for reference, but is not actually entered into the file.

```
2501000 500 12 0 24
11122223334445556666
11222233334445556666677778888999900001111
13 36 33 30 27 24 21 18 15 12 09 06 03 00 00 00 00 00 00 2
11222233334445556666677778888999900001111222233334444455555666666666777788889999000011
```

This example defines the following initial specifications:

- **Pressure level:** 250 hPa
- **Vertical layer:** 1000 hPa-500 hPa
- **Forecast hour:** 12
- **Time range:** 0-24
- **10 Pressure levels:** 1000 850 700 500 400 300 250 200 150 100
- **13 Forecast hours:** 36 33 30 27 24 21 18 15 12 09 06 03 00

 The field increment of 2 selects 7 hours: 36 30 24 18 12 6 0

--- Changing Width of a Cross-section Plot ---

By default, cross-sections are displayed in proportion to the vertical height. As a result, very narrow cross-sections may cover a small portion of the screen width. To control the width of the cross-section display while the program is in execution, you can use one of the following commands:

- **XNRO**
 Displays the cross-section in proportion to vertical height

- **XWID**
 Displays the cross-section in proportion to the vertical height

Both of these commands must be entered in PLAN view.

--- Changing Pressure Levels for Cross-section and Time-section Plots ---

WINGRIDDDS initializes the pressure levels used for cross-section and time-section plots from the default set of values defined in the file **INITGRID.SPC**. The information specified in this file includes the number of levels defined and the level values. To change this default set of levels while the program is in execution, you can use the command '**XLVL xxxx**', where xxxx is a 4 character file name (**xxxx.LVL**). Once a set of pressure levels is defined, it will remain in effect until a new set is defined with the '**XLVL**' command.
MAND.LVL is a sample file that defines the values of the pressure levels used for time-section and cross-section plots using only mandatory pressure levels. The number of pressure levels entered and the value of each level are entered on line 1 of the file starting in column 1. A maximum of 19 pressure levels can be defined. The number of pressure levels entered (field 1) has a length of 2 characters while each of the pressure level fields has a length of 4 characters. The actual number of pressure level fields you enter must agree with the number of levels you specify in field 1. The values must be right justified within the field. There are no additional spaces between the fields. Numerical values are expressed as integers without decimal points.

In the example shown below, the first line is the actual file entry. The second line indicates the field positions for clarity, but is not actually entered into the file.

```
101000 850 700 500 400 300 250 200 150 100
112222333344445555666677778888999900001111
```

This example defines 10 pressure levels: 1000 850 700 500 400 300 250 200 150 100.

--- Changing Forecast Hours for Time-section Plots

WINGRDDS initializes the forecast hours used to generate time-section plots with the default set of values defined in the file INITGRID.SPC. The information specified in this file includes the number of hours defined, the hour values and the time increment. The time increment determines which of the defined hour fields will actually be used by WINGRDDS for time-section plots. You can use the command 'THRS xxxx', where xxxx is a 4 character file name (xxxx.HRS), to change the default set of hours while the program is executing. Once a set of hours is defined, it will remain in effect until a new set is defined with the 'THRS' command. The time increment is defined in the .HRS file, but it can be changed independently with the 'TINC ####' command, where #### is the time increment.

36HR.HRS is a sample file that defines the forecast hours used for time-section plots. The number of hours defined, the hour values and the time increment are entered on line 1 of the file starting in column 1. A total of 19 forecast hours MUST be entered. If you wish to define fewer hours, the remaining values must be set to zero. The number of hours defined (field 1) has a length of 2 characters. Each of the hour values (fields 2-20) has a length of 4 characters. The increment between selected hour fields (field 21) has a length of 2 characters. The values must be right justified within the field. There are no spaces between the fields. Numerical values are expressed as integers.

In the example shown below, the first line is the actual file entry. The second line indicates the field positions for clarity, but is not actually entered into the file. All the data must be entered on the first line of the file.

```
13  36  33  30  27  24  21  18  15  12  09  06  03  00  00  00  00  00  00  00  2
11222233334444555566667777888899990000000000011
```

This example defines 13 times: 36 33 30 27 24 21 18 15 12 09 06 03 00. The time increment of 2 selects 7 times (36 30 24 18 12 6 0) that are actually used to create displays.

Note that the number of times defined is also used to control the width of the time-section screen displays. The time-section plot is scaled so that up to 19 times can be displayed across the full width of the screen. If you define fewer times, the display is centered but covers less of the screen width, as illustrated in the following examples.
Example 1: This file entry defines only 4 times (30,24,18,12). The time increment of 1 specifies all four hours for data selection. The data for hours 30,24,18,12 are displayed from the top to the bottom of the screen, but only across the center 4/19 of the horizontal screen width.

Example 2: This file entry defines 7 times (30,27,24,21,18,15,12). The time increment of 2 specifies only four of the times (30,24,18,12) for data selection. The data used to create the displays come from the same hours as example 1 (30,24,18,12), but are now displayed across 7/19 of the screen because more hours were defined.

Example 3: This file entry defines 10 times (30,28,26,24,22,20,18,16,14,12). The time increment of 3 still specifies the same hours for data selection as Example 1 (30,24,18,12), but now the data are displayed across 10/19 of the screen.

Example 4: This file entry defines 10 times (12,14,16,18,20,22,24,26,28,30). The time increment of 3 still specifies the same hours for data selection as Example 1 (30,24,18,12), but now the data are displayed across 10/19 of the screen. Also, the time will increment from left-to-right.

-- Station ID Lists

The list of station id’s used to define a display mode (refer to ‘Display Menu’) is contained in the file, \WINGRIDDS\DATA\STNID.DAT. There is also a list of primary stations used for Observation Station plots called STNID-PRIME.DAT. This is a list of stations the user wants to be guaranteed to be plotted (if data is available). It is also in the \WINGRIDDS\DATA directory and has the same format as STNID.DAT. However, stations at the top of the list have priority to be plotted over other stations lower on the list.

If necessary, your system administrator can add additional station id’s to the files. The following items must be entered for each station you add:

Station id 3 or 4 character id; a 3 character id must be contain a leading blank (e.g., _ADS). Use uppercase letters.

Latitude Real number of the form ###.## (e.g., _35.23); North latitudes are positive; South latitudes are negative.

Longitude Real number of the form ####.## (e.g., -101.70); East longitudes are positive; West longitudes are negative.

It is imperative that new entries be aligned with the current values in the file.
-- User Defined Alias Commands

WINGRIDDs performs computations using internally defined basic commands and combinations of these basic commands called alias commands. An alias command can be defined in terms of basic WINGRIDDs commands and other alias commands. It is useful to define alias commands when you repeatedly execute a group of WINGRIDDs commands or if you want to create up to a 10-letter command that is more appropriate for a user.

Basic systems alias commands are defined in the file, WINGRIDDs\DATA\ALIAS.DAT, and SHOULD NOT BE MODIFIED. You can expand the number of available alias commands by making an entry in the file, ALIAS.USR, in the WINGRIDDs\USER directory. The format of the entry is

xxxxxxxxxx=aaaa bbbb cccc ... oooo

where 'xxxxxxxxxx' is the alias name up to 10 alphanumeric characters long and 'aaaa bbbb cccc ... oooo' is the series of WINGRIDDs and other alias commands that define the new alias. All entries must be in uppercase and have the exact format specified above. The definition may contain a maximum of 50 commands/aliases and must be entered on one line of the file starting in column 1. An alias definition must not reference a macro (refer to 'Defining Products'). It can, however, be used in a macro. An alias command must not duplicate a WINGRIDDs command name or system alias. Once an alias is entered into ALIAS.USR, it can be used like any WINGRIDDs command.

A sample alias command that plots the vector wind as barbs is shown below.

\texttt{WNDB=BARB WIND}

Alias commands can have the potential to get very complicated and it is very important to understand that every command that replaces an alias command gets parsed through both the ALIAS.DAT and ALIAS.USR files. The following shows a more complex example:

\texttt{VV54=SAVR VVEL 500 VVEL 400}
\texttt{VV67=SAVR VVEL 700 VVEL 600}
\texttt{VVML=SMLC 1000 SAVR VV54 VV67}

The main alias command is VVML which yields the first command VV67. VV67 would then be parsed and yield:

\texttt{VV67=SAVR VVEL 700 VVEL 600}

Since there are no other alias listed commands in that string, the next command parsed in the VVML line would be VV54. VV54 would then be parsed and yield:

\texttt{VV54=SAVR VVEL 500 VVEL 400}

Since there are no other alias commands in the VVML command string, the final combined string to be executed in WINGRIDDs would look like this:

\texttt{SMLC 1000 SAVR SAVR VVEL 500 VVEL 400 SAVR VVEL 700 VVEL 600}

Alias commands can also be used to translate WINGRIDDs commands for international users.

\texttt{VENT=WIND} (French)
\texttt{VNTO=WIND} (Spanish/Portuguese)
-- GRIB Specifications for Data Ingest

The ingest process requires information relating GRIB identification values to convert model, grid, level, and parameter identifiers to the corresponding WINGRIDDS identifiers. Lists of these relationships are provided by the following set of files which reside in the GRIB directory. For most users, the default values contained in these files are sufficient. However, they may be modified if a required relationship was omitted.

GRIBMODL.DAT
This file is composed of entries containing a GRIB model value and its corresponding WINGRIDDS character model identifier. The GRIB model value is expressed as 3 numeric characters beginning in column 1. This is the WINGRIDDS model ID which consists of 3 alphanumeric characters beginning in column 5.

The WINGRIDDS model identifier has the following functions.

1. The model ID with a 1 character grid ID forms the 4 character WINGRIDDS model name which is used to reference information in the green area at the bottom of the screen while in Menu mode.

2. The first 2 characters of the WINGRIDDS model ID with a 1 character grid ID form the 3 character extension of the NWS and WAFS data file name.

Note: Some models, analyses, and/or forecasts from the same model run may be assigned different GRIB model values. To collate this data into a single WINGRIDDS data set, these different GRIB model values are given the same WINGRIDDS model identifier.

GRID.DAT
This file is composed of entries relating a GRIB grid identification value to a corresponding WINGRIDDS grid identifier. The WINGRIDDS grid identifier is used in conjunction with the WINGRIDDS model identifier as described above.

A portion of GRID.DAT is listed below. The first line indicates the field positions for clarity, but is not actually entered into the file. Note that there can be multiple entries for some GRIB grid identifiers. When this situation occurs, the first entry in the file for a given GRIB grid identifier is processed and the remaining entries (included only for historical purposes) are ignored.

<table>
<thead>
<tr>
<th>111 2</th>
<th>33333333333333333333333333333333</th>
</tr>
</thead>
<tbody>
<tr>
<td>212 4</td>
<td>AWIPS 40KM FULL GRID</td>
</tr>
<tr>
<td>212 4</td>
<td>AWIPS 40KM SUBSETTED GRID</td>
</tr>
<tr>
<td>211 8</td>
<td>AWIPS 80KM FULL GRID</td>
</tr>
<tr>
<td>211 8</td>
<td>AWIPS 80KM SUBSETTED GRID</td>
</tr>
<tr>
<td>6 L</td>
<td>LFM GRIDS</td>
</tr>
<tr>
<td>101 G</td>
<td>NGM 'OLD' C-GRID</td>
</tr>
<tr>
<td>104 S</td>
<td>NGM SUPER C-GRID</td>
</tr>
<tr>
<td>105 C</td>
<td>NGM '83' C-GRID</td>
</tr>
<tr>
<td>201 H</td>
<td>AWIPS NORTH HEMISPHERIC GRID</td>
</tr>
</tbody>
</table>
A sample entry (line 2 in the above sample file) and a description of each field in the entry is shown in the following table. Optional fields must be blank filled if they are not used.

<table>
<thead>
<tr>
<th>Example</th>
<th>Field</th>
<th>Description</th>
<th>Start column</th>
<th>Number of characters</th>
<th>Character type</th>
</tr>
</thead>
<tbody>
<tr>
<td>212</td>
<td>1</td>
<td>GRIB grid identification number</td>
<td>1</td>
<td>3</td>
<td>Numeric</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>WINGRIDDS grid identifier</td>
<td>5</td>
<td>1</td>
<td>Text</td>
</tr>
<tr>
<td>AWIPS 40KM SUBSETTED GRID</td>
<td>3</td>
<td>Grid description-optional</td>
<td>20</td>
<td>N/A</td>
<td>Text</td>
</tr>
</tbody>
</table>

GRIBPARM.DAT and MOSGRIBPARM.DAT

These files are composed of entries relating GRIB1 parameter identifiers to corresponding WINGRIDDS parameter names. The WINGRIDDS parameter name with the WINGRIDDS level identifier is then used to form the 8 character WINGRIDDS field name (e.g., TEMPB015). GRIBPARM.DAT is used for WAFS and NWS general GRIB1 file processing and MOSGRIBPARM.DAT is only used for MOS GRIB1 processing due to the different parameters which pertain to MOS data.

A portion of GRIBPARM.DAT is listed below. The first line indicates the field positions for clarity, but is not actually included in the file. The MOSGRIBPARM.DAT layout is similar.

```
111 2222 3333 444 555555555555555555555
001 PRES       -2 PRESSURE
002 PRES MSL  -2 MEAN SEA LEVEL PRESSURE
003 PTND       -2 PRESSURE TENDENCY
007 HGHT          HEIGHT - GEOPOTENTIAL
008 GHGT          HEIGHT - GEOMETRIC
010 OZON          TOTAL OZONE
011 TEMP          TEMPERATURE
```
A sample entry (line 2 in the above example) and a description of each field in the entry is shown in the following table. Optional fields must be blank filled if they are not used. The level override is used to set a standard level when there are potentially conflicting levels in the GRIB message. If a level override is given, that value is used in place of the WINGRIDDS level identifier. The 'power of 10' scale factor is used to convert the data from the units used in the GRIB message to those desired for WINGRIDDS. It is the user's responsibility to assure that the final scaled value is within the floating point range of -3.4E+38 to +3.4E+38.

<table>
<thead>
<tr>
<th>Example</th>
<th>Field</th>
<th>Description</th>
<th>Start column</th>
<th>Number of characters</th>
<th>Character type</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>1</td>
<td>GRIB parameter identifier</td>
<td>1</td>
<td>3</td>
<td>Numeric</td>
</tr>
<tr>
<td>PRES</td>
<td>2</td>
<td>WINGRIDDS parameter name</td>
<td>5</td>
<td>4</td>
<td>Alphanumeric</td>
</tr>
<tr>
<td>MSL</td>
<td>3</td>
<td>Level override (optional)</td>
<td>10</td>
<td>4</td>
<td>Alphanumeric</td>
</tr>
<tr>
<td>-2</td>
<td>4</td>
<td>Power of ten scale factor (optional)</td>
<td>15</td>
<td>3</td>
<td>Signed integer</td>
</tr>
<tr>
<td>MEAN SEA LEVEL PRESSURE</td>
<td>5</td>
<td>Parameter description (optional)</td>
<td>19</td>
<td>N/A</td>
<td>Text</td>
</tr>
</tbody>
</table>

GRIB2PARM.DAT

All GRIB2 messages use the parameter decode file called GRIB2PARM.DAT. This file has similar functions to the GRIBPARM.DAT file which will still be used for any GRIB1 processing. Notice, the parameter name allowance has been extended from 4 characters to 8 to allow more verbose parameter naming.

Due to the different parameter encoding scheme used in GRIB2 messages, the format of the GRIB2PARM.DAT file is different as well. See the example below:

```
111 222 333 44444444 5555 666 777777777777777777777777777777777777777777
000 000 000 TEMP              TEMPerature (deg K converted to deg C by WINGRIDDS)
000 000 001 VTMP              Virtual TeMPerature (degree K)
000 000 002 THTA              potential temperature [THeTA] (degree K)
000 000 003 THTE              equivalent potential temperature [THeTa-E] (degree K)
000 001 000 SPFH              SPeciFic Humidity (g/g)
000 001 001 RELH              RELative Humidity (%) 
000 001 002 MIXR              MIXing Ratio (g/g)
000 001 003 PWAT     0000  -1 Precipitable WATer (cm)
000 001 004 VPRS           -2 Vapor PReSSure (mb=hPa)
000 002 000 WNDD              WiND Direction (degree)
000 002 001 WNFF              WiNd speed (m/sec)
000 002 002 UGRD              GRiD relative U wind component (m/sec)
```
Table

<table>
<thead>
<tr>
<th>Example</th>
<th>Field</th>
<th>Description</th>
<th>Start column</th>
<th>Number of characters</th>
<th>Character type</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
<td>GRIB2 Discipline from Section 0</td>
<td>1</td>
<td>3</td>
<td>Numeric</td>
</tr>
<tr>
<td>001</td>
<td>2</td>
<td>GRIB2 Category number</td>
<td>5</td>
<td>3</td>
<td>Numeric</td>
</tr>
<tr>
<td>003</td>
<td>3</td>
<td>GRIB2 Parameter number</td>
<td>9</td>
<td>3</td>
<td>Numeric</td>
</tr>
<tr>
<td>PWAT</td>
<td>4</td>
<td>WINGRIDDS parameter name</td>
<td>13</td>
<td>8</td>
<td>Alphanumeric</td>
</tr>
<tr>
<td>0000</td>
<td>5</td>
<td>Level override (optional)</td>
<td>22</td>
<td>4</td>
<td>Alphanumeric</td>
</tr>
<tr>
<td>-1</td>
<td>6</td>
<td>Power of ten scale factor (optional)</td>
<td>27</td>
<td>3</td>
<td>Signed integer</td>
</tr>
<tr>
<td>PRECIPITABLE WATER</td>
<td>7</td>
<td>Parameter description (optional)</td>
<td>31</td>
<td>N/A</td>
<td>Text</td>
</tr>
</tbody>
</table>

Within both the GRIB2PCG32 and NGRB2PCG32 debug output files, the GRIB2 Discipline, Category and Parameter numbers are listed for each GRIB2 message as follows:

GRIB2 Displn/Cat/Param = 0 1 29

With the appropriate numbers listed for the specific parameter. If the parameter is not listed within the GRIB2PARM.DAT file, the raw GRIB2 parameter name will be listed as well as follows:

RAW GRIB2 PARAMETER = ASNOW

So the user can go and add that parameter to the GRIB2PARM.DAT for WINGRIDDS to use.

NOTICE*NOTICE*** NOTICE***NOTICE*** NOTICE***NOTICE***

The user should not presume that since the GRIB2 parameters are embedded within and automatically assigned that they should not need the GRIB2PARM.DAT for proper operations. The GRIB2PARM.DAT file is still required for and the ‘automatic’ ability within NGRB2PCG32 should only be used for any new, esoteric parameters which are not within the GRIB2PARM.DAT file or which may be added by NCEP or WMO at a future date.
GRIB2ENSPROBPARM.DAT

For NGRB2PCG32 to process Ensemble Probability GRIB2 data, it must utilize its own GRIB-to-Parameter decoding file. This file is of similar structure to GRIB2PARM.DAT. See the example below:

```
111 222 333 44444444 5555 666 7777777777777777777777777777777777777777777777777777
000 000 000 TMP               TEMPerature (deg K converted to deg C by WINGRIDDs)
000 000 002 THT               potential temperature [TheTA] (degree K)
000 001 001 RLH               RELative Humidity (%)
000 001 002 MXR               MIXing Ratio (g/g)
000 001 003 PWT 0000 -1 Precipitable WATer (cm)
000 001 004 VPR               -2 Vapor PReSSure (mb=hPa)
```

<table>
<thead>
<tr>
<th>Example</th>
<th>Field</th>
<th>Description</th>
<th>Start column</th>
<th>Number of characters</th>
<th>Character type</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
<td>GRIB2 Discipline from Section 0</td>
<td>1</td>
<td>3</td>
<td>Numeric</td>
</tr>
<tr>
<td>001</td>
<td>2</td>
<td>GRIB2 Category number</td>
<td>5</td>
<td>3</td>
<td>Numeric</td>
</tr>
<tr>
<td>003</td>
<td>3</td>
<td>GRIB2 Parameter number</td>
<td>9</td>
<td>3</td>
<td>Numeric</td>
</tr>
<tr>
<td>MXR</td>
<td>4</td>
<td>WINGRIDDs parameter name</td>
<td>13</td>
<td>8</td>
<td>Alphanumeric</td>
</tr>
<tr>
<td>0000</td>
<td>5</td>
<td>Level override (optional)</td>
<td>22</td>
<td>4</td>
<td>Alphanumeric</td>
</tr>
<tr>
<td>-1</td>
<td>6</td>
<td>Power of ten scale factor (optional)</td>
<td>27</td>
<td>3</td>
<td>Signed integer</td>
</tr>
<tr>
<td>MIXING RATIO</td>
<td>7</td>
<td>Parameter description (optional)</td>
<td>31</td>
<td>N/A</td>
<td>Text</td>
</tr>
</tbody>
</table>
GRIBLEVL.DAT

This file is composed of entries containing a numeric GRIB level value and its corresponding WINGRIDDS character level identifier. Only information for special levels is contained in this file. WINGRIDDS identifiers for other levels are described in the section 'Variables for Gridded Data Set'. The WINGRIDDS parameter name the WINGRIDDS level identifier form the 8 character WINGRIDDS field name.

The GRIB level value is expressed as 3 numeric characters beginning in column 1. This is the WINGRIDDS level id which consists of 4 alphanumeric characters beginning in column 5. No WINGRIDDS level id can begin with zero except for the currently used values of 0000, 0DEG, 0DGX.

GRIB2SKIP.DAT

GRIB2SKIP.DAT contains a list of parameters which, if they match what is in a GRIB2 message, the message will be skipped and NGRB2PCG32 will not crash. Below is a sample of the GRIB2SKIP.DAT file:

```
111 222 333 444
003 000 243 255
003 000 242 255
002 002 109 255
```

<table>
<thead>
<tr>
<th>Example</th>
<th>Field</th>
<th>Description</th>
<th>Start column</th>
<th>Number of characters</th>
<th>Character type</th>
</tr>
</thead>
<tbody>
<tr>
<td>003</td>
<td>1</td>
<td>GRIB2 Category number</td>
<td>1</td>
<td>3</td>
<td>Numeric</td>
</tr>
<tr>
<td>000</td>
<td>2</td>
<td>GRIB2 Parameter number</td>
<td>5</td>
<td>3</td>
<td>Numeric</td>
</tr>
<tr>
<td>243</td>
<td>3</td>
<td>GRIB2 Level number 1</td>
<td>9</td>
<td>3</td>
<td>Numeric</td>
</tr>
<tr>
<td>255</td>
<td>4</td>
<td>GRIB2 Level number 2</td>
<td>13</td>
<td>3</td>
<td>Numeric</td>
</tr>
</tbody>
</table>

Please refer to the Troubleshooting GRIB Ingest and Processing section for details on how to use this file.
-- Map Type Specifications

The MAPTYPE.DAT file is obsolete in WINGRDDS and is not required for the processing of the PCG Version 2 data files. **HOWEVER** – If you wish to display PCG Version 1 data files created with the DOS versions of PCGRIDDS, you MUST copy the MAPTYPE.DAT file from your PCGRIDDS program into WINGRDDS for WINGRDDS to accurately display the Version 1 files. Please refer to the DOS PCGRIDDS documentation concerning the explanation of the MAPTYPE.DAT file fields.

-- Background Map Selection

WINGRDDS has many high resolution map files with a variety of different features which can be used. The map files are stored in the `\WINGRDDS\MAPFIL` directory. A file in the `\WINGRDDS\USER` directory named MAPFILE.DAT is available to control the use of these high resolution map files. The names of the map files which the user wishes to display are listed in this file. The ‘WINGRDDS Settings’ tab of the ‘WINGRDDS Properties’ dialog contain the selection to use the Hi Rez maps and that option under ‘Map Base File Name’ must be selected for WINGRDDS to read the MAPFILE.DAT file.

In the MAPFILE.DAT, you list the new map file names you wish to display. You can list multiple files for display. Below is a list of the high resolution map file names and what they display:

AFRICABOUND - Africa boundaries and lakes
AFRICARIVER - Africa rivers
ASIABOUND - Asia, Australia and Pacific Islands boundaries
ASIARIVER - Asia and Australia rivers
COUNTY - US Counties
COUNTY2 - US Counties
EUROPEBOUND - Europe boundaries and lakes
EUROPERRIVER - Europe lakes
HRWO - Hi-Resolution World Outlines
HRWOB - Hi-Resolution World Outlines
HRUSS - Hi-Resolution US Streams
LRUSR - Lo-Resolution US Rivers
MRUSR - Med-Resolution US Rivers
NOAM1-BDY - US-Canada boarder
NOAM2-CIV - North America Outer Boundaries & Lakes
NOAM3-STATE - North America State Boundaries
NOAM4-RIV - North America Rivers
NOAM - North America and Mexico Borders and boundaries
NARR - North America Rural Roads
NAIH - North America Interstate Highways
NASH - North America State Highways
NASR - North America State Roads
SOUTHAMBOUND - South and Central America Boundaries and Lakes
SOUTHAMRIVER - South and Central America Rivers
STATES - US Hi Resolution State Boundaries
Also, within the \WINGRIDDS\MAPFIL directory is the directory **Country_Provinces** which has individual country files which contain high resolution province maps. These can be used only in conjunction with the high resolution files in the MAPFILE directory and are also controlled by the directions listed in the MAPFILE.DAT file.

The use of the **MAPFILE.DAT** is explained in the comments within the file itself. Below is an example of the **MAPFILE.DAT**;

```
******************************************************************************

! This file lists all Hi-Rez map files to be plotted in WINGRIDDS
! when the option is selected in the WINGRIDDS Properties. If an optional
! entry is not used, the default parameter from the WINGRIDDS
! Properties is used. Maps will be drawn in the order they are listed.
!
! The format is as follows:
!
! 1) (required) first is the file name from the MAPFIL/ directory
!
! 2) (optional) color the map info will be plotted in.
!    There are 8 basic colors which can be used. The colors are:
!
!
|   black |
|   red  |
|  yellow|
|   green|
|   cyan |
|   blue |
| magenta|
|   white|
!
! 3) (optional) line width - in pixels
!
! 4) (optional) line pattern style the map info will be plotted.
!    There are 8 line styles which can be used but the
!    represented number is what is used inline. The styles are:
!
!
| SolidLine     - 0 |
| Dotted        - 1 |
| Dashed        - 2 |
| DotDash       - 3 |
| DotDotDash    - 4 |
| LongShort     - 5 |
| ShortDash     - 6 |
| LongShortShort - 7 |
!
!
| Individual Hi-Rez country province files are available as well & reside in
| the MAPFIL\Country_Provinces directory. These files may be plotted with the
| same color & pattern options as listed above. To include these files in the
| map plotting, you must include the directory in the file string as follows:
!
! Country_Provinces\Guatemala_Prov.MAP green 1 2
!
******************************************************************************************

! COUNTY.MAP cyan 1 1
! NOAM4-RIV.MAP blue 3
```
--Plan, Cross Section & Time Section Area Lookup Tables

The Area Setup menus for Plan View, Cross Section and Time Section views all have a button labeled ‘Lookup’ which opens a window with a list of geographic areas or station IDs from which to choose from to configure the specific operation the user is trying to configure. The files to configure the Plan View, Cross Sections and Time Sections are AREA.DSP, CROS.DSP and TIME.DSP respectively and are located in the /DATA directory of WINGRIDDS. These files are simple text files and can be updated and modified by the user to add or change the listings. Each file’s contents are a fixed format and are similar but different and will be covered below.

AREA.DSP – this file contains the area of coverage/station ID, latitude, longitude and latitude N/S distance for the viewable area. A portion of **AREA.DSP** is listed below. The first line indicates the field positions for clarity, but is not actually included in the file.

```
1111111111111111222222344444445666666
AWIPS Grid 211  40.00N 100.00W 40
Great Plains     39.12N  94.60W 20
Gulf Coast       32.32N  90.08W 20
Mid-Atlantic     38.00N  80.00W 20
New England      42.75N  77.00W 20
```

Notice, the area in field one is **Left** justified and all the data areas are **Right** justified. Negative numbers are not needed to signify different hemispheres. That is shown in fields 3 & 5 with the N/S/E/W letters. The last line in this file is required to be the text ***DELETED***. This signifies the end of the data area.

CROS.DSP – this file contains the area of coverage/station IDs, and latitude/longitude pairs for the start/end points of the Cross Section.. A portion of **CROS.DSP** is listed below. The first line indicates the field positions for clarity, but is not actually included in the file.

```
1111111111111111222222344444445666666
INL-ELP          48.57N  93.38W 31.80N 106.40W
INL-PHX          48.57N  93.38W 33.43N 112.02W
INL-TLH          48.57N  93.38W 30.38N  84.37W
{ 80 West}       55.00N  80.00W 25.00N  80.00W
{ 90 West}       55.00N  90.00W 25.00N  90.00W
```

Notice, the area in field one is **Left** justified and all the data areas are **Right** justified. Negative numbers are not needed to signify different hemispheres. That is shown in fields 3,5,7 & 9 with the N/S/E/W letters. The last line in this file is required to be the text ***DELETED***. This signifies the end of the data area.
TIME.DSP – this file contains the area of coverage/station IDs, and latitude/longitude pair for the location point of the Time Section. A portion of TIME.DSP is listed below. The first line indicates the field positions for clarity, but is not actually included in the file.

```
1111111111111111222222344444445
BOS              42.37N  71.03W
DEN              39.50N 104.40W
ORD              41.98N  87.90W
```

Notice, the area in field one is **Left** justified and all the data areas are **Right** justified. Negative numbers are not needed to signify different hemispheres. That is shown in fields 3 & 5 with the N/S/E/W letters. The last line in this file is required to be the text ***DELETED***. This signifies the end of the data area.

Setting and Reading Default Contour Color-Fill Colors

WINGCONTFILLDEF.DAT within the **USER/** directory contains the default listings of colors to be used whenever the command CTFC is used without a following reference to a file name containing specific color listings. The format of the WINGCONTFILLDEF.DAT file included with WINGRIDDS is as follows:

```
10
148 0 211
0 0 255
0 255 0
255 255 0
255 0 0
191 119 0
0 0 150
0 150 0
150 150 0
150 0 0
```

Line 1 – number of Red-Green-Blue (RGB) colors to follow. These range from 2 to 50.
Lines 2-10 – the individual RGB values from 0-255 (0=black, 255 = bright)

Since WINGRIDDS contouring algorithms default to have a consistent number of 9 contour lines on a display, it is best to have a minimum of 9 colors listed in the WINGCONTFILLDEF.DAT file to ensure all contours are assigned a color.
Customizing Data Downloading

WINGRIDDS now has GRIB-file and Observation-file downloading capability which comprises of two utility functions, a batch file and, with the WINGRIDDS distribution, over 1800 data files which can be modified by the user to customize or add to any data file downloads the user wishes to add. This section will describe how the system works and how it can be modified or updated.

The GRIB/Observation download data files use the same book/chapter model of files that the ‘Product Menu’/‘Command Window’ models use. In the figure above, the GRIB downloads are broken down into five fixed categories and each category has its own reference file which are located in the WINGRIDDS/GRIB/USER directory. The Observation download has its own section but uses the same paradigm as the GRIB download.
GRIB/Observation Download Category file

Name The entries for each Download Category menu are stored in the files,

<table>
<thead>
<tr>
<th>Download Category</th>
<th>Reference File</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAFS GRIB</td>
<td>WAFSGDL.LST</td>
</tr>
<tr>
<td>Regular GRIB</td>
<td>REGGDL.LST</td>
</tr>
<tr>
<td>MOS GRIB</td>
<td>MOSGDL.LST</td>
</tr>
<tr>
<td>Ensemble-Regular GRIB</td>
<td>EREGGDL.LST</td>
</tr>
<tr>
<td>Ensemble-WAFS GRIB</td>
<td>EWAFSGDL.LST</td>
</tr>
<tr>
<td>Observation Data</td>
<td>OBSDL.LST</td>
</tr>
</tbody>
</table>

Format These files can be modified using a standard text editor. Each line in the file defines a specific download category. A maximum of 72 characters can be entered on a line. The lines are displayed sequentially.

WINGRIDDS automatically 'numbers' the order of appearance for each entry on the menu page. All other characters displayed for the entry lines must be contained in the menu file. All lines in the menu must contain text. If you wish to leave an empty line for clarity, add dashes as shown in the example below.

NOTICE - All Reference files in the WINGRIDDS GRIB Download system follow the similar arrangements and usage. Only one category is used for this example.

The file contents for the first screen of the default ‘Ensemble-WAFS GRIB’ menu are listed below.

............... Begin file EWAFSGDL.LST
--- NCEP Server I - ENSEMBLE WAFS GRIB
 00Z WAFS (ALL OCTANTS)
 06Z WAFS (ALL OCTANTS)
 12Z WAFS (ALL OCTANTS)
 18Z WAFS (ALL OCTANTS)
--- NCEP Server II - ENSEMBLE WAFS GRIB
 00Z WAFS (ALL OCTANTS)
 06Z WAFS (ALL OCTANTS)
 12Z WAFS (ALL OCTANTS)
 18Z WAFS (ALL OCTANTS)
............... End page EWAFSGDL.LST
Name

All the files for the ‘Ensemble-WAFS GRIB’ menus have the name EWAFSGDL. The line number of the entry in the 'Ensemble-WAFS GRIB' file (EWAFSGDL.LST) determines the extension of the file (EWAFSGDL.###) that provides the information for the corresponding 'Ensemble-WAFS GRIB' menu. For example, if you select the entry ‘00Z WAFS (ALL OCTANTS)’ which is on line 2 of the ‘Ensemble-WAFS GRIB’ file, the product list contained in the file, EWAFSGDL.002, is displayed.

Format

This file can be modified using a standard text editor. Each line in the file describes a specific product. The lines are displayed sequentially.

A maximum of 72 characters can be entered on a line. The first 4 characters of each line in a 'Ensemble-WAFS GRIB List' file must be the name of the macro file that corresponds to the selected entry. For example, if you select entry 11, ‘AREA between 30W to 60E and 0N to 90N’ from EWAFSGDL.002 (listed below), the data file name, EWF1003.DAT, is used as the argument for the utility GETGRIB.EXE.

WINGRIDDS automatically 'numbers' the order of appearance for each entry on the menu page. All other characters displayed for the entry lines must be contained in the menu file. In the example below, some entries are left blank for clarity. If the user selects a blank entry, WINGRIDDS return to the menu.

The contents for the first screen of the default 'Ensemble-WAFS GRIB List' file, EWAFSGDL.002, are listed below.

............... Begin file EWAFSGDL.002

--- Global Coverage ---
EWAFG003 GLOBE Centered on Greenwich (Octants=OPMNKL)

--- Hemisphere Coverage ---
EWNHG003 NORTHERN HEMISPHERE Centered on Greenwich (Octants=KLN)
EWHSG003 SOUTHERN HEMISPHERE Centered on Greenwich (Octants=OPMN)

--- Selected Areas ---
EWPL2003 The Caribbean and the Americas (Octants=KL)
EWOK4003 The Pacific and the Americas (Octants=OK)
EWMI4003 Europe, Africa and Western Asia (Octants=MNI)

---***-- Northern Hemispheric Areas --***---
EWFI1003 AREA between 30W to 60E and 0N to 90N (Octants=I)
EWFI2003 AREA between 30W to 150E and 0N to 90N (Octants=II)
EWFI3003 AREA between 30W to 120W and 0N to 90N (Octants=IJK)
EWFJ1003 AREA between 60E to 150E and 0N to 90N (Octants=J)
EWFJ2003 AREA between 60E to 120W and 0N to 90N (Octants=JK)
EWFJ3003 AREA between 60E to 30W and 0N to 90N (Octants=KL)
EWFK1003 AREA between 150E to 120W and 0N to 90N (Octants=K)
EWFK2003 AREA between 150E to 30W and 0N to 90N (Octants=KL)
EWFK3003 AREA between 150E to 60E and 0N to 90N (Octants=KLI)
EWFL1003 AREA between 120W to 30W and 0N to 90N (Octants=L)
EWFL2003 AREA between 120W to 60E and 0N to 90N (Octants=LI)
EWFL3003 AREA between 120W to 150E and 0N to 90N (Octants=LIJ)

---***-- Southern Hemispheric Areas --***---
EWFM1003 AREA between 30W to 60E and 90S to 0N (Octants=M)
EWFM2003 AREA between 30W to 150E and 90S to 0N (Octants=MN)
EWFM3003 AREA between 30W to 120W and 90S to 0N (Octants=MNO)
EWFN1003 AREA between 60E to 150E and 90S to 0N (Octants=N)
The naming of the 'Ensemble-WAFS GRIB List' files (and all other GRIB Download data files) are not fixed in any set way and the user creating new data files are free to name them in any way they choose.

NOTICE – The List file names must not be longer than 8 alphanumeric characters long.

Each line entry in the data file (except line 1) are read by GETGRIB.EXE and passed to the FTPCMD.BAT file. The download data file format is explained below.

Download Data file

Name
Each data file is a list of commands which are loaded into the FTPCMD.BAT file by the utility GETGRIB.EXE. The names of the files are assigned by the user.

Format
This file can be modified using a standard text editor. Each line in the file describes a specific product. The lines are displayed sequentially.

There is no maximum number of characters to be entered on a line. The first 4 characters of each line in a 'Ensemble-WAFS GRIB List' file must be the name of the macro file that corresponds to the selected entry. For example, if you select entry 11, 'AREA between 30W to 60E and 0N to 90N' from EWAFSGDL.002 (listed below), the data file name, EWFI1003.DAT, is used as the argument for the utility GETGRIB.EXE.
00
@echo off
if "%4"=="" goto End
::
:: Begin Download
::
echo Please wait... This download may take a while...
::
::
cd \wingrids\grib\wafs\OctantI
echo Downloading ENSEMBLE WAFS OctantI GRIB 000
"ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gens/prod/gefs.%1%2%3/%4/wafs/wafs.37.t%4z.ens00" -o wafs.37.t%4z.ens00

<<<<<< Sequence repeated to the end for each file to be downloaded >>>>>>>

::
:: All Done!!!
::
echo
echo Download Complete
goto :End
::
:End

Download Data file – Format (Cont.)

Line 1 – (Required) “00” Signifies the hour of the model run.
All Other Lines (Note Required) Begin Batch File commands. These commands may be customized by the user for their requirements. Ensure the data transfers area delivered to the proper WINGRIDDS directories. For the explanation of the “%1%2%3/%4” batch file variables in the data files, refer to the GETGRIB.EXE Utility details.

The GETGRIB.EXE Utility is explained below.
Automated Data Download

When the user within WINGRIDDS clicks on a specific data file to be downloaded, the download process starts by WINGRIDDS executing the following command (using the above example):

GETGIRB EWF1003.DAT

The same command can be executed in an automated batch file set up by the user. The user has to know which data file to use for the specific data to be downloaded and then schedule the download to retrieve the data once the model post-processing is complete.

GETGRIB Download Utility

When the user selects a specific download data file for GETGRIB to use, GETGRIB opens that file and reads the first line which should be a two digit number between 00-24. This signifies the hour of the specific model run. GETGRIB then open the file **FTPCMD.DAT**.

```
............. Begin file FTPCMD.DAT ..............................
120
5
\WINGRIDDS\CURL

************** File Structure Documentation ***************
Line 1   Time to wait (MIN) after model run time before switching to new
day's run

Line 2   Local GMT time offset (positive number: GMT is ahead of local
time, negative number: GMT is behind local time)

Line 3   Command string for file download utility. This is to include
any configuration flags required for your local network setup.
Refer to the section 'Get GRIB Data' in the WINGRIDDS User's
Guide for a detailed explanation.

............. End file FTPCMD.DAT ..............................
```

Using the data derived from FTPCMD.DAT, GETGRIB then checks the system time to get the year, month and day. If the Delay time and GMT offset sync well with the system time and the requested model run time read from the first line of the download data file, GETGRIB then builds the FTPDATA.BAT file. The utility used to do the actual data transfer is **CURL.EXE** and that utility is covered in detail in its own section below. Continuing the example shown above, the resultant FTPDATA.BAT created would look like this:
@echo off
if "%4"=="" goto End
::
:: Begin Download
::
echo Please wait... This download may take a while...
::
::

cd \wingridds\grib\wafs\OctantI

echo Downloading ENSEMBLE WAFS OctantI GRIB 000
"\WINGRIDDS\URL2FILE ftp://ftpprd.ncep.noaa.gov/pubdatanccf/com/gens/prod/gef.\%1\%2\%3\%4.wafs/wafs/wafs.37.t%4z.ens00" -o wafs.37.t%4z.ens00

<<<< Sequence repeated to the end for each file to be downloaded >>>>>>

::
:: All Done!!!
::
echo
echo Download Complete
goto :End
::
:End

.NOTICE - Due to formatting restrictions of this word processor, the \WINGRIDDS\CURL command line above is not shown in its proper form. Please ignore the 'word-wrap' effect shown above. The command line entry should be one long line.

.NOTICE – To ensure the file is copied properly, notice the file name at the end of the cURL command line is repeated twice. The first file name is the name of the file to be downloaded from the data server. The second file name is the name the file will be stored as within WINGRIDDS. The second file name does NOT have to be the same as what is downloaded.

GETGRIB then executes the FTPDATA.BAT with the following command:

FTPDATA “YYYY MM DD HH”

Where the YYYY MM DD HH is filled with the date-time-group.

The date-time-group is passed as arguments to the FTPDATA.BAT batch file and are used within the batch file in the following ways:

YYYY = %1
MM = %2
DD = %3
HH = %4
Therefore, the following line within the batch file;

```
gef.%1%2%3%4.wafs/wafs/wafs.37.t%4z.ens00
```

would actually be executed as, for example;

```
gef.2006092600.wafs/wafs/wafs.37.t00z.ens00
```

*****NOTICE*****
The cURL (sic) utility is used to perform the data downloads into WINGRIDDS. Detailed info and man pages can be found at: curl.haxx.se

WINGRIDDS has the ability to use custom scripts to download sectorized GRIB files from the NOMADS servers using the GRIB Filter feature on the website. As an example, do the following:

To download a 1x1 GFS forecast,
I started from this the Sept 01 18Z forecast 1x1 GFS

```
> https://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_1p00.pl?dir=%2Fgfs.20190901
```

a) Select all levels.
b) Select tmp and hgt parameters.
c) Select "Show the URL".
d) Click on "start download"

A web page will be displayed with the following URL info:

```
URL= https://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_1p00.pl?file=gfs.t18z.pgrb2.1p00.f000&all_lev=on&var_HGT=on&var_TMP=on &leftlon=0&rightlon=360&toplat=90&bottomlat=-90&dir=%2Fgfs.20210901%2Fatmos
```

The URL that you use should not have "/showurl=".

The URL string must be modified in a few ways to work properly.

1) Change the date-time-group from “dir=%2Fgfs.20210901%2F18%2Fatmos” to “dir=%2Fgfs.%3%4%5%2F%6%2Fatmos”

Where: %3 = year (YYYY)
%4 = month (MM)
%5 = day (DD)
%6 = model run hour (HH)

2) Change the model run hour in the file name “file=gfs.t18z.pgrb2.1p00.f000” to “file=gfs.t%6z.pgrb2.1p00.f000”
3) Place the whole string in quotations

"https://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_1p00.pl?file=gfs.t%6z.pgrb2.1p00.f000&all_lev=on&var_HGT=on&var_TMP=on&leftlon=0&rightlon=360&toplat=90&bottomlat=-90&dir=%2Fgfs.%3%4%5%2F%6%2Fatmos"

4) On the end, add a space then "-o" (lower-case ‘oh’) then the desired file name to save download as.

Following other download scripts, repeat this entry for each forecast hour desired – changing the file name to reflect other desired forecast hours such as...

file=gfs.t%6z.pgrb2.1p00.f006
file=gfs.t%6z.pgrb2.1p00.f012
file=gfs.t%6z.pgrb2.1p00.f024
...

etc., etc.

*****NOTICE*****
The NOMADS site has a variety of different model runs with various sectorized options. The URL link that is displayed will vary with different file= and dir= names and even these will change over time for the same model/sector runs. It is very important you become familiar with the basic formats to know how to handle individual differences.
WINGRIDDS Workstation/Server Setup

It has been the design history of WINGRIDDS that the GRIB file downloads from a model run and the GRIB ingest utilities would be run one at a time and there were no abilities for any parallel operations. These days, with multiple model runs becoming available at similar times, the ability to download and process multiple model runs is needed. Also, with the need of multiple users needing access to the same data files at the same time, a client/server configuration would be useful.

WINGRIDDS now allows systems to be configured to handle and process multiple simultaneous model runs either on a standalone workstation for a single user or on a server system with multiple users remotely accessing the WINGRIDDS data files. The following section will go through a step-by-step process configuring a standalone workstation and, later, due to their similarities, configure a server with similar operations but providing remote access to the data.

These sections will cover the recommended drive/directory setup, batch file creation and Windows Task Scheduler management. There may be other ways to implement the following tasks but if you deviate from what is laid out here, I may not be able to offer any support. Also, I won’t be covering any Windows Network or User permissions/management here. Please consult your local Windows System/Network Administrator.

For the following sections, a Workstation is defined as a system which has the automated download and WINGRIDDS operations on the same machine. For a Server, only the automated GRIB download and processing tasks are on the server and the processed data files are remotely accessed by single or multiple WINGRIDDS computer through a network connection.
***Workstation Automation Configuration:

When setting up a system (Workstation or Server) to automate GRIB downloading and processing, I find it is the easiest to configure and manage if the System Time is set to UTC (Coordinated Universal Time) or Zulu time because model runs, post processing and status times are all given in UTC so it just makes it easier to set up and manage scripts when everyone is on the same time zone. In Windows, you would go to the lower right corner, right-click the system clock numbers and select “Adjust Date/Time” then click the “Change time zone” button.

Along with this, you need to edit the FTPCMD.DAT file line 2 and change the “Local GMT time offset” to zero (0).

Next, you need to have an idea as to what models and GRIB files you wish to download on a scheduled basis. You need to ensure you have sufficient drive space to accommodate all of the data you wish to download and store the processed data. Your drive may fill up quicker than you anticipate!
If you wish to use the existing WINGRIDDS download scripts, you should open WINGRIDDS and go through the GRIB Download menu selections to select and document the download scripts you are interested in. The screenshot below shows a “GRIB Download Selection” dialog for one of the GFS models. Notice, the left column shows the names of the Download Scripts which are stored in the WINGRIDDS/GRIB/USER directory. These file names are what you need to record when making your list of GRIB download scripts to run.

![GRIB Download Selection](image)

However, if you wish to create your own download scripts, that is acceptable as well.
In order to run multiple copies of NGRB2PCG32 on different models at the same times, you need to create a different directory structure to accommodate each model type. Below is a screen shot of what I set up for this demonstration.

I created the “Ingest” directory and a separate directory within Ingest for each model I wanted to download and process. The location within Drive E is not important.

I will be using the GFS directory as a reference but the contents will be the same for any other model directory you choose to add.
Within the GFS directory is the “GRIB” directory as well as copies of the NGRB2PCG32.EXE and GRIBNAMES.DAT files. The NGRB2PCG32.OUT file is the log file for NGRB2PCG32 and is created with every GRIB Process job. These files are copied from the WINGRIDDSD directory.
Next, within the GRIB directory are all the configuration files that NGRB2PCG32 requires for operations. All of these files are copied from the WINGRIDDS/GRIB directory. Also in this directory is the “GFS” directory which is the download destination of the GRIB files to be processed. The name of this directory can be anything you wish – I just name it the same as the model run but it is not important.

These steps outlined above need to be repeated for each model you wish to download and process.
*** GRIB Download Scripts and Batch Files

In the steps above, you were instructed to go through and list the various GRIB download scripts you would need for operations. It is easier to manage this automated process if those scripts are copied from the WINGRIDDS\GRIB\USER directory to a separate, common directory. I have placed mine in the root of the E:\ drive. They are the *.DAT files.

If a download script is copied from the WINGRIDDS\GRIB\USER directory, each file needs to be modified. The following screen shot shows the example of the GF202.DAT file.

Notice, the destination directory string (in red circle) that every download script has needs to be changed to point to the new destination directory the user has set up. With this example, it is;

\ Ingest \ GFS \ GRIB \ GFS
There is also a batch file (*.BAT) for every .DAT file. The associated batch file to go along with the GF2002.DAT file is “GETGFS00Z.BAT” which downloads and processes the 00Z GFS model run. The user may name the file anything they wish. These batch files functions are to call the GETGRIB utility to download the GRIB data, call NGRB2PCG32 to convert the data and, finally, to delete the GRIB data which was processed to make room for the next GFS GRIB download cycle. The contents of the GETGFS00Z.BAT file follow the same template and are as follows:

**
ECHO OFF
REM >CHANGE DIRECTORY TO \W NGRI DDS & EXECUTE THE
REM >GETGRIB TO BUILD & EXECUTE BATCH FILE.
CD \W NGRI DDS
GETGRIB GF2002.DAT
REM >CHANGE DIRECTORY TO ACTIVE MODEL DIR AND
REM >EXECUTE NGRB2PCG32 TO CONVERT GRIB DATA
CD \Ingest\GFS
NGRB2PCG32.EXE S/E:\Ingest\GFS\GRIB\GFS D/C:\W NGRI DDS\GRIDDATA\
REM >CHANGE DIRECTORY TO THE GRIB DIR & DELETE
REM >DOWNLOADED GRIB DATA
CD \Ingest\GFS\GRIB\GFS
DEL *.*/q
REM >DONE!!!
**

Notice – NGRB2PCG32 now has options to dictate a Source directory (S/) and dictate a Destination directory (D/).
*** Automated GRIB Download Schedule Setup

This section will cover the configuration and management of the Windows Task Scheduler utility. The screen shots and steps will show the Windows 7 version. Other windows versions should be different but similar.

To start the Windows Task Scheduler, click the Start button, right-click on Computer and select “Manage” menu option.
This will bring up the Windows task Scheduler.
To set up a new scheduled task, click the ‘Create Basic Task’ in the top right “Actions” window.

I named my task “GFS00ZDownload” and entered a simple description of its function.

Click “Next”
Since this task will be needed once a day, select “Daily” button.

Click “Next”
This section tells the Scheduler when during the day and how often during the day to execute.

It is important at this point to know when the post-processing of the model data you are interested in will be available to download into WINGRIDDS. NCEP provides a web site to show the status of all its model runs. The Internet address is:

http://www.nco.ncep.noaa.gov/pmb/nwprod/prodstat/
A screen shot of the 00Z GFS model run status looks like the following;

<table>
<thead>
<tr>
<th>EVENT</th>
<th>Average Start Time</th>
<th>Average End Time</th>
<th>STATUS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA DUMP AND Prep</td>
<td>02:47.03</td>
<td>02:54.03</td>
<td>SCHEDULED</td>
<td>ON-TIME</td>
</tr>
<tr>
<td>Analysis</td>
<td>02:54:35</td>
<td>03:14.15</td>
<td>SCHEDULED</td>
<td>ON-TIME</td>
</tr>
<tr>
<td>T1534 Forecast F00-F240</td>
<td>03:14:45</td>
<td>04:38:49</td>
<td>SCHEDULED</td>
<td>ON-TIME</td>
</tr>
<tr>
<td>T574 Forecast F252-F384</td>
<td>04:39:00</td>
<td>04:54:22</td>
<td>SCHEDULED</td>
<td>ON-TIME</td>
</tr>
<tr>
<td>12hr Products</td>
<td>03:22:32</td>
<td>03:33:21</td>
<td>SCHEDULED</td>
<td>ON-TIME</td>
</tr>
<tr>
<td>24hr Products</td>
<td>03:33:26</td>
<td>03:37:05</td>
<td>SCHEDULED</td>
<td>ON-TIME</td>
</tr>
<tr>
<td>T574 Forecast F252-F384</td>
<td>03:37:08</td>
<td>03:40:52</td>
<td>SCHEDULED</td>
<td>ON-TIME</td>
</tr>
<tr>
<td>48hr Products</td>
<td>03:40:51</td>
<td>03:44:35</td>
<td>SCHEDULED</td>
<td>ON-TIME</td>
</tr>
<tr>
<td>60-72hr Products</td>
<td>03:44:36</td>
<td>03:51:59</td>
<td>SCHEDULED</td>
<td>ON-TIME</td>
</tr>
<tr>
<td>84-120hr Products</td>
<td>03:52:02</td>
<td>04:08:11</td>
<td>SCHEDULED</td>
<td>ON-TIME</td>
</tr>
</tbody>
</table>

Notice – the average time of the final GRIB product availability is around 0400Z. I would not start the download process till around 15-20 minutes after this time to ensure all products would be available. If you start the download too soon or if the post processing is delayed, you may not download the complete model run.

Each NCEP model has different model run times so you should consult this page to determine a good download time.
With this information, I would start the 00Z GFS GRIB download at around 0430Z every day.

Click “Next”
The next step is obvious – what action to perform? “Start a program”

Click “Next”
Next, you are telling the Task Scheduler what program to start & where it is located.

You browse to where you have your script located and select it. *Also*, you must put the drive and/or directory where it is located in the “Start in (optional)” window or, for whatever reason, it will not execute.

Click “Next”
In this last window, you confirm the Name of the task, the Trigger event and the Name/Location of the batch file. If all is correct, click “Finish”.

These steps need to be repeated for every different model name and/or run you wish to download and process.
***Server Configuration:

A WINGRIDDS Server setup and configuration is very similar to the Workstation setup as far as Automated GRIB download is concerned. What makes the Server setup different is that you are ‘sharing’ the processed data directory on the network for other computers to see and use.

Server File Sharing Configuration Setup

For our Server example, we have a separate drive F: where our GRIB Ingest and WINGRIDDS directories are located.
To setup the sharing of directories, from the Windows Desktop, go to the ‘Start-button’, right-click ‘Computer’ then select ‘Manage’ option.
Within the ‘Computer Management’ console tree, click ‘System Tools’, click ‘Shared Folders’, and then click ‘Shares’. On the ‘Action’ menu, click ‘New Share’. Follow the steps in the Create a Shared Folder Wizard, and then click ‘Finish’. You will want to share your WINGRIDDS folder. Once it is complete, it should look like this:
Once the WINGRIDDS folder is shared, you will need to set the properties and permissions so other users can have access to the folder. Right-click on the new shared folder in the ‘Shared Folders’, ‘Shares’ window as seen below;

Set the ‘User limit’ to ‘Maximum Allowed’. For Windows 7 Professional, the limit is 20 concurrent users. If you need more user access, you need to use Windows Server.
Next, click the ‘Share Permissions’ tab. Ensure ‘Everyone’ has full control ‘Allow’ of the folder.
Next, click the ‘Security’ tab & ensure the ‘Home Users’ have ‘Read & Execute’, ‘List Folder Contents’ and ‘Read’ permissions.
Once your folder sharing is complete and your remote WINGRIDDS Workstation is connected to the same network, on your WINGRIDDS Workstation PC, open the Windows Explorer and click on the ‘Network’. You should see the WINGRIDDS Workstation you are on (in this case, WINGRIDDS-PC) and you should see the Server PC as well (in this case, WINGRIDDSDEV-PC).

Double-click on the Server name to show the folders which are shared.
Right-click on the shared folder name you need to bring up the menu and select ‘Map Network Drive’.
Select the drive letter you wish to use, ensure the folder name is "\(system name)\WINGRDDS", check "Connect at logon" and click "Finish".
Once that is complete, you should see the shared drive on your ‘Computer’ selection in the ‘Windows Explorer’. Click on the shared drive and you should see it’s contents.
To complete the WINGRIDDS Server connection configuration, you need to open WINGRIDDS>Properties and select the “WINGRIDDS Data Directories” to change the “Processed Data Destination” to the location on the shared folder.
Once the shared folder is selected, the result will look like this:
Now, whenever data is selected within WINGRIDDs, the ‘Select PCG Data File’ dialog will always open to the WINGRIDDs\GRIDDATA directory on the shared folder on the remote server.

Again, if there are any issues or problems getting any of this to work correctly, please consult your local Microsoft Windows/Network Administrator and explain what you need.
Troubleshooting GRIB Download and Processing

This section will briefly cover some of the more common issues preventing WINGRIDDs from either downloading GRIB data properly or processing the correctly downloaded GRIB data. The sections will be listed by error description and will give a probable solution to correcting the problem to allow downloading/processing to continue.

GRIB Download Problem #1
Symptom - GRIB files downloads very fast and processing 'zips' by but no data files are created.

Solution – The cURL download utility will create a requested file which is effectively empty even if no data is downloaded. If you look in the \WINGRIDDs\GRIB\NWS directory, you will probably find all the requested GRIB file names listed but their file sizes are 1kb:

![Image of file directory]

The problem is most likely with the download script having either a unintentional typographical error or the server/directory you are trying to download GRIB data from has changed. Check for correct server name and/or directory name.
GRIB Processing Problem #1
Symptom – GRIB data downloads correctly but when it is processed, every GRIB message has an error message:

****ERROR UNKNOWN MODEL TYPE # 81

and no data files are created.

Solution – The NGRB2PCG32 utility needs to know how to decode and identify the model generating the GRIB data because the PCG file name contains the 3-letter ID of the model ID. The example below, unknown model ID type #81 refers to the GFS model.

For whatever model ID is failing, you need to open the \WINGRIDDS\GRIB\GRIBMODEL.DAT file and add the specific model ID which is missing so NGRB2PCG32 can process the data. (see p. 260).

GRIB Processing Problem #2
Symptom – GRIB data downloads correctly but when it is processed, there are random GRIB message that have an error message:

****NOTICE - UNKNOWN GRIB PARAMETER # 81

Solution – The NGRB2PCG32 utility needs to know how to decode and identify the GRIB2 parameters and it references the \WINGRIDDS\GRIB\GRIB2PARM.DAT file for that function. If the specific GRIB2 parameter is not found in the GRIB2PARM.DAT file, it will reference all the known parameters in the source code and assign the ‘Standard’ parameter name which is acceptable.
If you as a user do not like the pre-assigned name, you need to go and collect the specific GRIB2 parameter information from the NGRB2PCG32.OUT file for that specific GRIB2 message and update the GRIB2PARM.DAT file with your own preferred parameter name.

GRIB Processing Problem #3

Symptom – GRIB data downloads correctly and processes every GRIB2 message but at the end, when collecting and saving the WINGRIDDS Inventory Records, an error message:

Fortrl: severe (66): output statement overflows record, unit 4

is shown on the screen.

Solution – this situation is saying that there are too many GRIB2 parameters in the forecast hour to store in the PCG data file. This situation is created usually when a user downloads a small sub-sector geographic area for a model that also has a very large number of parameters. The ‘record’ in the error message is a fixed size which is determined by the number of grid points in the geographic area. When a sub-sector is requested, the record size (in bytes) will shrink in proportion the fewer number of grid points and if the model run has many parameters (this example had 355 parameters in the forecast hour) there is a risk of having too many parameters & it will fail.
The solution is, when downloading the GRIB data, either request a larger sub-sector area or request fewer GRIB parameters. Regretfully, this is a trial-and-error process. You must delete the processed data files, delete the downloaded GRIB files, modify the script & try again, repeating till it works.

GRIB Processing Problem #4
Symptom – NGRB2PCG32 is executed but it immediately fails with a file open error message:

FILE OPEN ERROR: ERROR, FILE= 601

is shown on the screen.

Solution – This is saying that the required PCG data file has already been created during a previous session for the GRIB data being processed. Delete the processed data files.
GRIB Processing Problem #5
Symptom – NGRB2PCG32 is executed but it immediately fails with a file open error message:

FILE OPEN ERROR: ERROR, FILE= 602

is shown on the screen.

Solution – This is saying that the requested PCG data directory or the link to the directory where the PCG data files are stored does not exists. Correct the directory listed in the WINGRIDDSS Properties to one that exists or create the directory that is listed.

GRIB Processing Problem #6
Symptom – NGRB2PCG32 is executed and processing through the data but it fails at some point with an error message:

Fortr! severe (157): Program Exception – access violation

And will list GBYTESC as the offending routine. See screen shot below:
Solution - It has been discovered that some GRIB2 messages from NOMADS have unique parameters which are not packed correctly and may cause NGRB2PCG32 to crash. This seems to only affect GRIB2 messages that are packed with “Simple Packing” which NOMADS uses when users request sub-sectored GRIB data. All GRIB2 messages have their raw GRIB2 Category, Parameter, Level 1 & Level 2 information decoded just before the unpacking starts. The entry in the NGRB2PCG32.OUT file from above looks like this:

```
===== BEGIN READ ===== IGB100( 7 & 8) COPIED TO 1 & 2
READING NEW GRIB RECORD = 21927
===== BEGIN NEW GRIB EDITION 2 RECORD =====
REC#,SIZE = 408 5356
NBYTES,IRDRC7,IRDREC= 5356 54 21979
IRDST/IRDEND/IGRBZZ= 21928 21978 3
*****GF_UNPACK4 2 2 109 255
******* Simple Unpacking
```

If the specific GRIB2 message causes NGRB2PCG32 to fail, the next to last message will be the “*****GF_UNPACK4 “ message. This is listing the GRIB2 Category, Parameter, Level 1 & Level 2 information. To prevent the crash, the user needs to open the \WINGRIDDS\GRIB\GRIB2SKIP.DAT file and add the specific information and reprocess the data. When NGRB2PCG32 encounters this GRIB message, it will skip & continue.
Appendix A: Command Function Summary

**. WINGRIDDSS --- COMMAND SUMMARY

General Commands: -- |NAME| indicates an alternative name --
 -- [. . .] describes additional information needed
 -- Ch. is an abbreviation for Character
 -- ! following command name indicates system alias
 -- (Scalar/Vector) Shows what is result of calculation

ERAS|ERSN!,ERSC!| > ERASes current screen display
EXIT|X QUIT Q STOP S END or E| > Terminates the program

**- Gridded Data File Manipulation Commands:
SFIL > Interactively resets active grid file
FIL1 > Changes active gridded data file to first file opened
FIL2 > Changes active gridded data file to second file opened
...
FIL9 > Changes active gridded data file to ninth file opened
FILA > Changes active gridded data file to tenth file opened
...
FILK > Changes active gridded data file to twentieth file opened
FI-# > Changes active gridded data file to #th file earlier on list
FI+# > Changes active gridded data file to #th file later on list
FI- > Changes active gridded data file to next file earlier on list
FI+ > Changes active gridded data file to next file later on list
LFIL|FILS,LFI=!| > List data files already opened

**- Setting Forecast Time Specifications for data requests:
FHOR|SFHR| > Requests input of Forecast HOuR
FHRS|SFHS| > Requests input of PAIR OF Forecast HOuRs
SFHR[1 integer time] > Changes default forecast time
SFHS[2 integer times] > Change default fcst time pair
ANAL|F-1, F-1| > Sets Forecast Hour to use analysis grids
GUES|F-3, F-3| > Sets Forecast Hour to use analysis guess grids
GES6|F-6, F-6| > Sets Forecast Hour to use analysis 6 h guess grids
F###| F##| > Sets Forecast Hour to use ### hour forecast grids
F00 |INIT| > Sets Forecast Hour to use initialized grids
F12 | F12| > Sets Forecast Hour to use 12 hour forecast grids
F24 | F24| > Sets Forecast Hour to use 24 hour forecast grids
FHR1 > Gets data from first time of FHRS time pair for commands to left
FHR2 > Gets data from second time of FHRS time pair for commands to left
FH+ > Steps forward to the next available forecast hour in the data set
FH− > Steps backward to the previous available forecast hour in the data set

**- Setting Level/Layer specifications for data requests:
SLVL [one 4 chtr level] > Specifies Level for data selection
| ### | [3 or 4 digit integer] > Sets Level to numerical value
S### > Sets Level to Sigma level centered at ### mb
S###|S982,S943,S896,S844,S784| > Sets Level to bottom 5 sigma level
###M|0M,2M,10M| > Sets Level to ### Meters above ground (height<100m)
M### > Sets Level to ### hectares above ground (height>=100m)
###Z > Sets Level to ### Meters above mean sea level (height<100m)
Z### > Sets Level to ### Meters above mean sea level (height>=100m)
###U > Sets Level to ### centimeters below land surface (depth<1000cm)
U### > Sets Level to ### meters below land surface (depth>=1000cm)
B### > Sets Level to "Boundary" layer centered at ### mb above ground
I### > Sets Level to ### degree (K) Isentropic surface
L### > Sets Level to Flight Level ####
PV## > Sets Level to #.# PV (Potential Vorticity) Surface of 1.2 PV Units
P+##/P-## > Sets Level to PV (Potential Vorticity) level ## hundreds ft above / below the Tropopause
H### > Sets Level to ### feet or meters above sea level (x10)
Y### > Sets Level to 'Hybrid-B' level (010-500) (Native RUC grids only)
MSL > Sets Level to Mean Sea Level
TROP > Sets Level to TROPopause
MAXW |WMAX!| > Sets Level to MAXimum Wind level
SFC |0000| > Sets Level to the Earth SuRaCe

**- Level/Layer specifications:
SLYR |LAY=! ,LAYR| [two 4 Ch. levels] > Change data Layer specs
LV+# > Increments Level to next # higher level
SVLV > Savaes current Level specification
SVLY > Savaes current Layer specification
RSLV > ReStores saved Level specification
RSLY > ReStores saved Layer specification
LV−# > Increments Level to next # lower level
LS+# > Changes Level to # higher than current LVL (useful in XSCT processing)
LS−# > Changes Level to # lower than current LVL (useful in XSCT processing)
LVL0 > Return to originally defined LVL after completing LS+# or LS−# commands
LY+# > Changes Layer Top (LVL2) to # higher than LVL
LY−# > Changes Layer Bottom (LVL1) to # lower than LVL
Output specifications:

AROW | VCTR! | > Sets display mode to plot winds as arrows (Default)
BARB > Sets display mode to plot winds as Barbs (m/s)
STRM > Sets display mode to plot winds IN STReaMline like presentation

DASH > Sets display mode to plot DASHed lines for this plot only
DOTS > Sets display mode to plot DOTTed lines for this plot only
DDSHP > Sets display mode to plot DOTTED/DASHED dashed lines for this plot only
LDASH > Sets display mode to plot Long DaSHed lines for this plot only
MDASH > Sets display mode to plot Medium Dash
LSDASH > Sets display mode to plot Long/Short Dash
LDASHD > Sets display mode to plot Long Dash/Dot
LDASHDD > Sets display mode to plot Long Dash/2 Dots
LSSSDASH > Sets display mode to plot Long/3 Short Dash
MDASHDDDD > Sets display mode to plot Medium Dash/3 Dots

DPOS > Dash POSitive contours
DNEG > Dash NEGative contours

DATA > Sets display mode to plot DATa values At grid points - no contours
DAT+ > Sets display mode to plot DATa values slightly above grid points
DAT− > Sets display mode to plot DATa values slightly below grid points
DATT > Sets display mode to plot DATa values on Top of grid points
DATB > Sets display mode to plot DATa values Below grid points
DATO > Sets display mode to plot DATa values Over grid points - Above DATT
DATU > Sets display mode to plot DATa values Under grid points - Below DATB

PNMS > Plots in front of all negative numbers; positive numbers unsigned
PPLS > Plots + in front of all positive numbers; negative numbers unsigned

Output specifications:

HILO > Plots H or L above data at local maximum/minimum (with contours)
HIIS > Plots H above data at local maximum (with contours)
HIID > Plots H above data at local maximum (without contours)
Lows > Plots L above data at local minimum (with contours)
LOWD > Plots L above data at local minimum (without contours)

MXMN > Plots X or N above data at local maximum/minimum (with contours)
MAXS > Plots X above data at local maximum (with contours)
MAXD > Plots X above data at local maximum (without contours)
MINS > Plots N above data at local minimum (with contours)
MIND > Plots N above data at local minimum (without contours)
BOXS ! > Plots boxes at grid points below the surface
BOX# > Plots a box at each grid point; # indicates box size

Output specifications:
SCL#/DML# > Display labels with signed digits greater than or equal to 10**#
SCL0/DML0 > Display labels with signed digits greater than or equal to 10**0 (1)
SC-#/DM-# > Display labels with signed digits greater than or equal to 10**-#
SC-1/DM-1 > Display labels with signed digits greater than or equal to 10**-1 (.1)

MOD# > Display labels using Modulo of SCALED display value and 10**#

STOP > Stops display of grid statistics at top of screen
STON > Starts display of grid statistics at top of screen

CNSM|KSMO,KSM=!| [Integer] > Sets CoNtour SMoothing (Default=1)
CNUM [Integer] > Changes maximum number of contours to display
#DGT > Plot maximum # of digits on contour labels / data plots (default 4)

**Layer/Time interval manipulations >>> For data in gridded data set <<<
LAVE|LAVR!| > Calculate Layer AVERAGE of variables to LEFT in Command line
LSUM|LADD!| > Calculate Layer SUM of variables to LEFT in Command line
LDIF > Calculate Layer DIFFerence of variables to LEFT in Command line
LVL1|LYR1,LY1=!| > Gets data from bottom of Layer for variables to LEFT
LVL2|LYR2,LY2=!| > Gets data from top of Layer for variables to LEFT
LEVL > Overrides LVL1 and LVL2 and gets data from original level
TAVE > Calculate Time AVERAGE of variables at LEFT using times FHR1 and FHR2
TAVE+ > Calculate Time AVERAGE of variables at LEFT using next Forecast Hour
TTOT > Calculates Time TOTAL of variables at LEFT using times FHR1 and FHR2
TTOT+ > Calculates Time TOTAL of variables at LEFT using next Forecast Hour
TDIF > Calculate Time DIFFERENCE of variables at LEFT between FHR1 and FHR2
TDIF+ > Calculate Time DIFFERENCE of variables at LEFT using next Forecast Hour
TTND > Calculate Time TeNDency of variables at LEFT between FHR1 and FHR2
TTND+ > Calculate Time TeNDency of variables at LEFT using next Forecast Hour

**Layer/Time interval manipulations >>> For data in gridded data set <<<

LYSM > Calculates LaYer SuM of functions to RIGHT - One plot per line
LYAV > Calculates LaYer AVERAGE of functions to RIGHT - One plot per line
LYDF > Calculates LaYer DIFFERENCE of functions to RIGHT - One plot per line
TMSM > Calculates TiMe SuM of functions to RIGHT - One plot per line
TMAV > Calculates TiMe AVerage of functions to RIGHT - One plot per line
TMDF > Calculates TiMe DiFFerence of functions to RIGHT - One plot per line
TMTN > Calculates TiMe TeNdency of functions to RIGHT - One plot per line
HRLY | PRHR | > Converts diagnostic command results from /sec to /hour
DALY | PRDY | > Converts diagnostic command results from /sec to /day

Special Gridded Data Requests:
MIXR > Calculates Mixing Ratio from available data fields
SPFH > calculates Specific Humidity from available data fields
RELH > Calculates Relative Humidity from available data fields
SMIX > Calculates Saturation Mixing Ratio from available data fields
SDEF > Calculates Mixing Ratio Saturation Deficit from available data fields
DWPT | DWPC ! | > Calculates DeW Point Temperature from available data fields (C)
DWPK ! > Calculates DeW Point Temperature from available data fields (K)
DWPF ! > Calculates DeW Point Temperature from available data fields (F)
PRES > Calculates Pressure from available data fields
TEMP | TMPC ! | > Calculates temperature in degrees C
TMPK | TMPA ! | > Calculates temperature in degrees K
TMPF ! > Calculates temperature in degrees F
THTA > Calculates Potential Temperature from available data fields (K)
THTE > Calculates Equivalent Potential Temperature from data fields (K)
THTS > Calculates Saturated Equivalent Potential Temperature from data fields (K)
THCK | TKNS ! | > Generates Thickness fields
TEMP > Retrieves the total wind Vector in m/s
WKNT ! > Retrieves the total wind Vector in knots
WMPH ! > Retrieves the total wind Vector in mph
WKPH ! > Retrieves the total wind Vector in kph
BWND | WBND ! | > Retrieves the total wind Vector in m/s for display as wind barb
BKNT ! > Retrieves the total wind Vector in knots and sets display as wind barb
BMPH ! > Retrieves the total wind Vector in mph and sets display as wind barb
BKPH ! > Retrieves the total wind Vector in kph and sets display as wind barb
WMDA ! > Retrieves the total wind Vector in m/s and sets display as wind arrow
GEOS > Generates the Geostrophic wind Vector
AGEO ! > Generates the Ageostrophic wind Vector
TWND | THWN ! | > Generates Thermal Wind
ISAL > Computes the Isallobaric Wind
INAD > Computes the Inertial Advective Wind
ALTI > Altimeter Setting (Inches)
ALTM > Altimeter Setting (Millimeters)
JCBN [2 Scalars] > Computes the Jacobian determinate of two scalars
FRTG [Vector] > Computes Frontogenesis of the wind
FVCT > (Vector) Calculates F {Normal wind} Vectors
FVCTS > (Vector) Calculates F {Normal wind} Vectors Tangent
FVCTN > (Vector) Calculates F {Normal wind} Normal
FVCTU > (Scalar) Calculates F {Normal wind} Vectors Tangent (UGRD)
FVCTV > (Scalar) Calculates F {Normal wind} Vectors Tangent (VGRD)
FVCTSU > (Scalar) Calculates F {Normal wind} Vectors Tangent (UGRD)
FVCTSV > (Scalar) Calculates F {Normal wind} Vectors Tangent (VGRD)
FVCTNU > (Scalar) Calculates F {Normal wind} Vectors Normal (UGRD)
FVCTNV > (Scalar) Calculates F {Normal wind} Vectors Normal (VGRD)
QVCT > (Vector) Calculates Q {Geostrophic wind} Vectors
QVCTS > (Vector) Calculates Q {Geostrophic wind} Vectors Tangent
QVCTN > (Vector) Calculates Q {Geostrophic wind} Vectors Normal
QVCTU > (Scalar) Calculates Q {Geostrophic wind} Vectors Tangent (UGRD)
QVCTV > (Scalar) Calculates Q {Geostrophic wind} Vectors Tangent (VGRD)
QVCTSU > (Scalar) Calculates Q {Geostrophic wind} Vectors Tangent (UGRD)
QVCTSV > (Scalar) Calculates Q {Geostrophic wind} Vectors Tangent (VGRD)
QVCTNU > (Scalar) Calculates Q {Geostrophic wind} Vectors Normal (UGRD)
QVCTNV > (Scalar) Calculates Q {Geostrophic wind} Vectors Normal (VGRD)
VECR [Scalar,Scalar] > Creates a vector from 2 scalar grids
SPED! [Vector] > Calculates magnitude of wind Vector (m/s)
SPKT! [Vector] > Calculates magnitude of wind Vector (knots)
SPML! [Vector] > Calculates magnitude of wind Vector (mph)
SPKM! [Vector] > Calculates magnitude of wind Vector (kph)
DRCT [Vector] > Contours values of DiReCTion of a Vector
DDFF [Vector] > Displays packed value of Vector Direction/speed
DDD! [Vector] > Displays values of DiReCTion of a Vector
WSPD! > Generates isotachs for Total wind (m/s)
WSPK! > Provides total Wind SPeed in Knots
WDDDF! > Displays packed value of Total Wind Direction/speed (m/s)
WDDRD! > Displays value of Total Wind Direction (degrees)
WDDD! > Displays value of Total Wind Direction (degrees)
XCMP|UCMP [Vector] | > Returns grid relative X CoMPonent of vector
YCMP|VCMP [Vector] | > Returns grid relative Y CoMPonent of vector
LIFT|LIFX,LIFB | > Provides Lifted Index fields without resetting LEVeL
TTHE > Temperature of a parcel lifted from the bottom to the top of LAYeR
CNVT > Temperature needed for parcel from surface to lift freely to LEVeL
TPCP > Provides Total Precipitation fields without resetting LEVeL (mm)
CPCP > Provides Convective Precipitation fields without resetting LEVeL (mm)
LPCP > Provides Large-Scale Precipitation fields without resetting LEVeL (mm)
TPCC > Provides Total Precipitation fields without resetting LEVeL (cm)
CPCC > Provides Convective Precipitation fields without resetting LEVeL (cm)
LPCC > Provides Large-Scale Precipitation fields without resetting LEVeL (cm)
TPCI > Provides Total Precipitation fields without resetting LEVeL (in)
CPCI > Provides Convective Precipitation fields without resetting LEVeL (in)
LPCI > Provides Large-Scale Precipitation fields without resetting LEVeL (in)

PMSL > Provides Mean Sea Level Pressure fields without resetting LEVeL

Note: If mean sea level pressure (GRIB ID=002) is not available, then an attempt is made to retrieve the RUC Reduction, the Eta Model Reduction, and the Standard Atmosphere Reduction, in that order.

PMSS > Provides MSL Pressure fields (Std. atm. reduction) -- No LEVeL reset
PMSR > Provides MSL Pressure fields (RUC reduction) -- No LEVeL reset
PMSN > Provides MSL Pressure fields (ETA model reduction) -- No LEVeL reset
MMSL > MSL pressure for RUC (MPAS) surface analysis using MAPS reduction
NMSL > MSL pressure for RUC (MPAS) surface analysis using NMC reduction
PSFC > Provides Surface Pressure fields without resetting LEVeL
PWAT > Provides Precipitable Water fields without resetting LEVeL (mm)
PWAI > Provides Precipitable Water fields without resetting LEVeL (in)
WVRT > Generates vorticity of the Total wind
GVRT > Generates vorticity of the Geostrophic wind
AVRT > Calculates the absolute VoRTicity of Ageostrophic wind
WDVR > Calculates DiVeRgence of the total Wind field
WSHD > Calculates SHearing Deformation of total Wind
GSHD > Calculates SHearing Deformation of Geostrophic Wind
ASHD > Calculates SHearing Deformation of Ageostrophic Wind
WSTD > Calculates STretching Deformation of total Wind
GSTD > Calculates STretching Deformation of Geostrophic Wind
ASTD > Calculates STretching Deformation of Ageostrophic Wind
TADV > Generates Temperature Advection using the Total wind
QADV > Generates Mixing Ratio Advection using the Total wind
PADV > Generates Pressure Advection using the Total wind
STAB > Computes static stability in a layer
IMAS > Calculates Isentropic MASs (inverse static stability) in any layer
LNDX > Calculates 'Lifted Index' between LVL1 and LVL2
SHOW > Calculates 'Showalter Index'
SWSN > Calculates 'SWEAT Index - NH'
SWTS > Calculates 'SWEAT Index - SH'
KINX > Calculates 'K Index'
TOTL > Calculates 'TOTAL Index'
CTOT > Calculates 'CROSS TOTAL Index'
VTOT > Calculates 'VERTICAL TOTAL Index'

TLCL > Calculates the Temperature at the LCL from LEVeL data
PLCL > Calculates the Pressure of the LCL from LEVeL data
PDEF! > Calculates the Pressure DEFicit (lift) needed for saturation the LCL
DCAPE > Downdraft CAPE
CAPE3KM > CAPE Calculated through lowest 3km
CAPE6KM > CAPE Calculated through lowest 6km

POC > Pressure 0C deg level
PM10C > Pressure -10C deg level
PM20C > Pressure -20C deg level
PM30C > Pressure -30C deg level
HGT0C > Height 0C deg level
HGTM10C > Height -10C deg level
HGTM20C > Height -20C deg level
HGTM30C > Height -30C deg level

THTAV > Virtual Potential Temperature - THeta(degree K)

**- Inversion Diagnostics:
TEMPFCNV > SFC Temperature for Free Convection
PRHB > PRES at Relative Humidity Break
HRHB > HGHT at Relative Humidity Break
PBINV > PRES at base of Inversion
HBINV > HGHT at base of Inversion
EMLFLG > Elevated Mixing Layer Flag
THKEML > Thickness of EML (meters)
AVGTHTEEML > Average THeta of EML
INVLSI > LID Strength Index
LSILT > LID Strength Index - Lid Term
LSIBT > LID Strength Index - Buoyancy Term
PTINV > PRES at Top of Inversion
HTINV > HGHT at Top of Inversion
TTINV > TEMP at Top of Inversion
RHTINV > RELH at Top of Inversion
TBINV > TEMP at Base of Inversion
RHBINV > RELH at Base of Inversion
THTATINV > THTA at Top of Inversion
THTABINV > THTA at Base of Inversion
THKINV > Thickness of Inversion (meters)
TDIFINV > Temperature Difference through Inversion
RHDIFINV > RELH Difference through Inversion

MAUL > Moist Absolute Unstable Layer

WKMAUL > Weak Moist Absolute Unstable Layer

LIDS > Max Sat. Wet Bulb Pot. Temp. (SWBPT) above sfc

LIDSDT > Delta SWBPT across inversion near sfc to 400 mb

LIDSLow > Max SWBPT layer below 650 mb only

LIDSDTLOW > Delta SWBPT across inversion layer below 650 mb only

LIDSHIGH > Max SWBPT layer between 650 mb and 400 mb

LIDSDTHIGH > Delta SWBPT across inversion layer between 650 mb and 400 mb

SWBPTMAX > value of max SWBPT

SWBPTMAXLO > value of max SWBPT below 650 mb only

SWBPTMAXHI > value of max SWBPT between 650 mb and 400 mb

LIDVALUE > Lid strength near SFC to 400 mb

LIDVALUELO > Lid strength below 650 mb only

LIDVALUEHI > Lid strength between 650 mb and 400 mb

TURBH > Turbulence (Ellrod) Index - Horizontal Term

TURBV > Turbulence (Ellrod) Index - Vertical Term

TURBT > Turbulence (Ellrod) Index - Total Term

INRI! > Calculates the INverse of the Richardson number

IGRI! > Calculates the Inverse of the Geostrophic Richardson number

VELPOT [Vector] > Velocity Potential (Scalar)

VELOPTHW [Vector] > Velocity Potential of Harmonic Wind (Scalar)

STRMFNC [Vector] > Stream Function (Scalar)

STRMFNCHW [Vector] > Stream Function of Harmonic Wind (Scalar)

WINDNDI [Vector] > Non-Divergent Wind (Vector)

UNDI [Vector] > UGRD Non-Divergent Wind (Scalar)

VNDI [Vector] > VGRD Non-Divergent Wind (Scalar)

WINDIRR [Vector] > Irrotational Wind (Vector)

UIRR [Vector] > UGRD Irrotational Wind (Scalar)

VIRR [Vector] > VGRD Irrotational Wind (Scalar)

WINDHAR [Vector] > Harmonic Wind (Vector)

UHAR [Vector] > UGRD Harmonic Wind (Scalar)

VHAR [Vector] > VGRD Harmonic Wind (Scalar)

WINDINV [Vector] > Summed Wind (IR+ND+VELPOT) (Vector)

USUMVP [Vector] > UGRD Summed Wind (IR+ND+VELPOT) (Scalar)

VSUMVP [Vector] > VGRD Summed Wind (IR+ND+VELPOT) (Scalar)

WINDINS [Vector] > Summed Wind (IR+ND+STRMFNC) (Vector)

USUMSF [Vector] > UGRD Summed Wind (IR+ND+STRMFNC) (Scalar)

VSUMSF [Vector] > VGRD Summed Wind (IR+ND+STRMFNC) (Scalar)

WINDDIFF [Vector] > Provided Wind (ND+IR) (Vector)
UDIFF [Vector] > UGRD Provided Wind (ND+IR) (Scalar)
VDIFF [Vector] > VGRD Provided Wind (ND+IR) (Scalar)
WINDDIFFV [Vector] > Summed VELPOT Wind - Provided Wind (Vector)
UDISSVP [Vector] > UGRD Summed VELPOT Wind - Provided Wind (Scalar)
VDIFFVP [Vector] > VGRD Summed VELPOT Wind - Provided Wind (Scalar)
WINDDIFFS [Vector] > Summed STRMFNC Wind - Provided Wind (Vector)
UDIFFSF [Vector] > UGRD Summed STRMFNC Wind - Provided Wind (Scalar)
VDIFFSF [Vector] > VGRD Summed STRMFNC Wind - Provided Wind (Scalar)
WINDROT [Vector] > Irrotational Wind - Provided Wind (Vector)
UROT [Vector] > UGRD Irrotational Wind - Provided Wind (Scalar)
VROT [Vector] > VGRD Irrotational Wind - Provided Wind (Scalar)
WINDDD [Vector] > VELPOT Harmonic Wind + Non-Divergent Wind (Vector)
UDD [Vector] > UGRD VELPOT Harmonic Wind + Non-Divergent Wind (Scalar)
VDD [Vector] > VGRD VELPOT Harmonic Wind + Non-Divergent Wind (Scalar)

FFFF | F! | > Provides coriolis parameter at each grid point
DMP | MFTR!, MAP! | > Provides map factor at each grid point
ALAT | LATT!, LAT!, LATI! | > Latitude
ALON | LONG!, LON! | > Longitude
EDIR > DiRection of rotation from map standard North/South Earth longitude
CSLT > Cosine of Latitude
MSG0 > Produces grid with 1's at points with data and 0's at points without
MSG1 > Produces grid with 0's at points with data and 1's at points without
MSNG! > Produces grid with missing value flags at points without data
ZERO > Provides scalar grid of all zeros (Used to display wind components)
GMIN > Produces scalar Grid with values of MINimum of last grid
GMAX > Produces scalar Grid with values of MAXimum of last grid
GMEN > Produces scalar Grid with values of MEaN of last grid
GSDV > Produces scalar Grid with values of Standard DeViation of last grid
SCPY > Produces a CoPY of a Scalar field
VCPY > Produces a CoPY of a Vector field
SSWP > SWaPs locations of last 2 Scalar fields in memory
VSWP > SWaPs locations of last 2 Vector fields in memory
DUMP > Prints grid point values in file 'GRIDS.OUT'

SSUM [2 Scalars] > Calculates Scalar grid sum
SAVR [2 Scalars] > Calculates Scalar grid average
SDIF [2 Scalars] > Calculates Scalar grid difference
STND [2 Scalars] > Calculates Scalar grid time tendency
SMLT [2 Scalars] > Multiplies two Scalar fields
SDVD [2 Scalars] > Divides two Scalar fields
SADC [<10 digit value] > Sum of Scalar & specified constant
SSBC [<10 digit value] > Difference of Scalar & specified constant
SMLC [<10 digit value>] > Multiplies Scalar by specified constant
SDVC [<10 digit value>] > Divides Scalar by specified constant
INVS [Scalar] > Finds INVerse of a Scalar
INV1 [Scalar] > Finds INVerse of a Scalar with maximum of 1
ABSV [Scalar] > Calculates ABSolute Value of Scalar grid

**- Diagnostic Functions:

SNEG! [Scalar] > Finds the NEGative of a Scalar grid
SINE [Scalar] > Calculates the SINE of Scalar grid (e.g., WDRC)
COSN [Scalar] > Calculates the COSiNe of Scalar grid (e.g., WDRC)
TNGT [Scalar] > Calculates the TaNGenT of Scalar grid (e.g., WDRC)
ASIN [Scalar] > Calculates the ARC SINe of Scalar grid
ACOS [Scalar] > Calculates the ARC COSine of Scalar grid
ATAN [Scalar] > Calculates the ARC TANgenT of Scalar grid
ALOG [Scalar] > Calculates the LOG (Base e) of Scalar grid
LG10 [Scalar] > Calculates the LOG (Base 10) of Scalar grid
EXPP [Scalar] > Calculates the EXponent (Base e) of Scalar grid
EX10 [Scalar] > Calculates the EXponent (Base 10) of Scalar grid
SQRT [Scalar] > Return square root of absolute value of scalars
SKNT! [Scalar] > Converts Scalar from m/s to KNoTs
SMPH! [Scalar] > Converts Scalar from m/s to Miles Per Hour
SKPH! [Scalar] > Converts Scalar from m/s to Kilometers Per Hour
M2F=! [Scalar] > Converts Scalar from meters to feet
CM2I! [Scalar] > Converts Scalar from centimeters to inches

DSDX [Scalar] > Calculates X gradient of Scalar
DSDY [Scalar] > Calculates Y gradient of Scalar
GRAD [Scalar] > Finds the GRADient of a Scalar field
MGRD! [Scalar] > Magnitude of the GRaDient of a Scalar field
NGRD! [Scalar] > Finds the Negative GRaDient of a Scalar field
DVDX [Vector] > Calculates X gradients of a Vector
DVDY [Vector] > Calculates Y gradients of a Vector
VADC [<10 digit value>] > Sum of Vector & specified constant
VSBC [<10 digit value>] > Difference of Vector & specified constant
VMLC [<10 digit value>] > Multiplies Vector by specified constant
VDVC [<10 digit value>] > Divides Vector by specified constant
VNEG! [Vector] > Finds the NEGative of a Vector field
VSUM [2 Vectors] > Calculates the Vector sum
VAVR [2 Vectors] > Calculates the Vector average

330
VDIF [2 Vectors] > Calculates the Vector difference
VTND [2 Vectors] > Calculates the Vector time tendency
VMLT [2 Vectors] > Multiplies two Vectors by components
DOTP [2 Vectors] > Calculates the DOT Product of 2 Vectors
CRSP [2 Vectors] > Calculates the CRosS Product of two Vectors
VDVD [2 Vectors] > Divides two Vectors by components

VKNT! [Vector] > Converts a Vector from m/s to KNoTs
VMPH! [Vector] > Converts a Vector from m/s to MPH
VKPH! [Vector] > Converts a Vector from m/s to KPH
MAGN|MSPC! | [Vector] > Calculates MAGNitude of a Vector
KNOT! [Scalar] > Converts a Scalar (e.g., WSPD) from m/s to KNOTs
MLPH! [Scalar] > Converts a Scalar (e.g., WSPD) from m/s to MPH
KMPH! [Scalar] > Converts a Scalar (e.g., WSPD) from m/s to KPH
DVRG [Vector] > Calculates divergence (inverse of convergence)
CNVG [Vector] > Calculates convergence (inverse of divergence)
ADVT [Scalar and Vector] > Calculates advection
FLUX [Scalar and Vector] > Produces a flux Vector
SDVR! [Scalar and Vector] > Calculates flux divergence
RVRT [Vector] > Calculates relative vorticity
VORT! [Vector] > Calculates absolute vorticity

IPVO > Isentropic Potential Vorticity calculated between LVL1 and LVL2 when LVL1 and LVL2 are set to Theta levels.
IPVA > Isentropic Potential Vorticity Advection calculated between LVL1 and LVL2 when LVL1 and LVL2 are set to Theta levels.
PVTA > Isobaric Potential Vorticity (Theta) calculated between LVL1 and LVL2 when LVL1 and LVL2 are set to pressure levels.
PVTE > Isobaric Potential Vorticity (Theta-E) calculated between LVL1 and LVL2 when LVL1 and LVL2 are set to pressure levels.
PVTS > Isobaric Potential Vorticity (Theta-S) calculated between LVL1 and LVL2 when LVL1 and LVL2 are set to pressure levels.
PVAA > Isobaric Potential Vorticity (Theta) Advection calculated between LVL1 and LVL2 when LVL1 and LVL2 are set to pressure levels.
PVEA > Isobaric Potential Vorticity (Theta-E) Advection calculated between LVL1 and LVL2 when LVL1 and LVL2 are set to pressure levels.
PVSA > Isobaric Potential Vorticity (Theta-S) Advection calculated between LVL1 and LVL2 when LVL1 and LVL2 are set to pressure levels.
PVN > potential vorticity (m**2/kg/s)
Pvu > potential vorticity (10**-6*K*m**2/kg/s)
SPENT > specific entropy (J/K/kg)

SHRRVRT [Vector] > Calculates Shear Relative Vorticity
SHRAVRT [Vector] > Calculates Shear Absolute Vorticity
CRVRVRT [Vector] > Calculates Curvature Relative Vorticity
CRVAVRT [Vector] > Calculates Curvature Absolute Vorticity
SHDF [Vector] > Calculates SHearing DeFormation
STDF [Vector] > Calculates STretching DeFormation
DFCP [Vector] > Calculates Deformation components {X COMP, Y COMP} of any vector
WGEO [Scalar] > Calculates Geostrophic Wind from Scalar field
VRTV > Calculates instantaneous Vertical Velocity approximation.
OMGA > Calculates Vertical Velocity over the forecast period of time.

SMTH > Applies a binomial SMooTHer to the active scale data field
SMT# > Applies a binomial SMooTHer # times to the active scalar data field
SMOO > Applies a light SMooOther to the active scalar data field
VSMT > Applies a binomial sMooTHer to the active Vector field
VSM# > Applies a binomial sMooTHer # times to the active Vector field
RLTN [digit value] > Replaces values Less ThaN with that value
RGTN [digit value] > Replaces values Greater ThaN with value
MLTN [digit value] > Replaces values Less ThaN as Missing
MGTN [digit value] > Replaces values Greater ThaN as Missing
MSKS! [a field] > Replaces values below the surface as missing
SMAX > Finds the MAXimum at each grid point of two Scalar fields
SMIN > Finds the MINimum at each grid point of two Scalar fields
ZNEG > Sets all NEGative values to Zero
ZPOS > Sets all POSitive values to Zero
SPOW [digit value] > Computes the exponential value of scalar raised to the power of constant
VPOW [digit value] > Computes the exponential value of vector raised to the power of constant

FNTW > Calculates areas of frontal wave formations
FNSP > Calculates the speed/direction of frontal areas
FNZN > Calculates Frontal Zone
FNADVTA > Calculates Frontal Advection with THTA
FNADVTW > Calculates Frontal Advection with THTW

RFGD [Vector] > Deformation Term of Rotational Frontogenesis
RFGT [Vector] > Tilting Term of Rotational Frontogenesis
RFGV [Vector] > Relative Vorticity Term of Rotational Frontogenesis
RFGN [Vector] > Rotational Frontogenesis (RFGD+RFGT+RFGV)
EFGD [Vector] > Deformation Term of Escalar Frontogenesis
EFGT [Vector] > Tilting Term of Escalar Frontogenesis
EFGG [Vector] > Divergence Term of Escalar Frontogenesis
EFGN [Vector] > Escalar Frontogenesis (EFGD+EFGT+EFGG)
ERPV > Ertel Potential Vorticity
BVFS > Brunt-Vaisala Frequency Squared
BVFQ > Brunt-Vaisala Frequency
BVFP > Brunt-Vaisala Frequency Period
TRVC > Trof/Ridge Vector
DFRM [Vector] > Deformation of the wind

CLIMO30 [Scalar/Vector] > Display 30yr Climate value (1985-2015) of Parameter
CLIMO60 [Scalar/Vector] > Display 60yr Climate value (1955-2015) of Parameter
ANOMLY30 [Scalar/Vector] > Display the difference between parameter & 30yr Climate value
ANOMLY60 [Scalar/Vector] > Display the difference between parameter & 60yr Climate value

**- Diagnostic Functions - Convection Control Flags

VTMP > Virtual Temperature Correction
 All convection parameters are calculated without virtual temperature correction by default. This flag enables that correction.

SBSI > Surface-Based Lifted Parcel Selected
MLSI > Mean-Layer Lifted Parcel Selected
MUSI > Most Unstable Lifted Parcel Selected
USSI > User-Selected Lifted Parcel Selected
If no Lifted Parcel method is selected, Surface-Based Lifted Parcel is default.

**- Diagnostic Functions - Convection Parameters

CPOS [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Convective Positive Energy (CAPE)
CNEG [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Convective Negative Energy (CINH)
PLPL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Pressure Lifted Parcel Level
TLPL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Temperature Lifted Parcel Level
DLPL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Dew point Lifted Parcel Level
HLPL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Height Lifted Parcel Level
THLP [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Theta Lifted Parcel Level
TELPl [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Theta-e Lifted Parcel Level
PLCL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Pressure Lifted Condensation Level
TLCL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Temperature p Lifted Condensation Level
MLCL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Mixing ratio Lifted Condensation Level
HLCL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Height Lifted Condensation Level
THLC [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Theta Lifted Condensation Level
TELCl [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Theta-e Lifted Condensation Level
PLFC [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Pressure Level of Free Convection
TLFC [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Temperature Level of Free Convection
DLFC [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Dew point Level of Free Convection
HLFC [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Height Level of Free Convection
THLF [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Theta Level of Free Convection
TELF [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Theta-e Level of Free Convection
PCCL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Pressure Convective Condensation Level
TCCL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Temperature Convective Condensation Level
DCCL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Dew point Convective Condensation Level
HCCL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Height Convective Condensation Level
THCC [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Theta Convective Condensation Level
TECC [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Theta-e Convective Condensation Level
PEQL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Pressure Equilibrium Level
TEQL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Temperature Equilibrium Level
DEQL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Dew point Equilibrium Level
HEQL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Height Equilibrium Level
MPCL [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Height Max Parcel Level
VGP [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Vorticity Generation potential
SCP [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Supercell Composite Parameter
STP [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Significant Tornado Parameter
CONVT [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Convective Temperature
DCONVT [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Deep Convective Temperature
V VMAX [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Parcel Maximum Vertical Velocity
ENERGY [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Heating Required for Convection
HAILSZ [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Hail Size
PWATER [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Precipitable Water
EHINDX [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Energy Helicity Index
DENBUOY [(VTMP) (SBSI, MLSI, MUSI, USSI)] > CAPE Density
LFTDX{***}{Top Pressure} [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Lifted Index
TDIFLCLF [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Temp Difference between LCL & LFC
TDIFCCLF [(VTMP) (SBSI, MLSI, MUSI, USSI)] > Temp Difference between CCL & LFC

SCP1 > Alt Supercell Composite Parameter // eshear * (esrh/50) * (cape/1000.)
STP1 > Significant Tornado Parameter // eshear * (esrh/150) * (mlcape/1500) * lclh
STP2 > Significant Tornado Parameter (with CIN) // eshear * (esrh/150) * (mlcape/1500) * lclh * mlcinh
STP3 > Significant Tornado Parameter // shr6 * (shr1/150.) * (sbcape/1500.) * lclh
STP5 > Significant Tornado Parameter (effective layer) // eshear * (esrh/150.) * (cape6km/500.) * lclh
STP6 > Craven & Brooks Significant Tornado Parameter // (6ksh * 1ksh * mlcape) / (mlcl hgt * dcape)
MCS PROB > Probability of MCS (Mesoscale Convective System)
LAPS_P[\texttt{****-****}] > Lapse Rate between Pressure Surfaces (mb)
LAPS_H[\texttt{****-****}] > Lapse Rate between Height Surfaces (km)
LAPS_P[\texttt{****-****}] > Lapse Rate between Pressure Surfaces (mb)
MWND_P[\texttt{****-****}] > Mean Wind between Pressure Surfaces (mb)
MWND_PU[\texttt{****-****}] > U-Parameter Mean Wind between Pressure Surfaces (mb)
MWND_PV[\texttt{****-****}] > V-Parameter Mean Wind between Pressure Surfaces (mb)
MWND_H[\texttt{****-****}] > Mean Wind between Height Surfaces (km)
MWND_HU[\texttt{****-****}] > U-Parameter Mean Wind between Height Surfaces (km)
MWND_HV[\texttt{****-****}] > V-Parameter Mean Wind between Height Surfaces (km)

EILB > Effective Inflow Layer – Bottom
EILBH > Effective Inflow Layer – Bottom Height (M)
EILBP > Effective Inflow Layer – Bottom Pressure (mb)
EILT > Effective Inflow Layer – Top
EILTH > Effective Inflow Layer – Top Height (M)
EILTP > Effective Inflow Layer – Top Pressure (mb)
EILTHKH > Effective Inflow Layer – Thickness Height (M)
EILTHKP > Effective Inflow Layer – Thickness Pressure (mb)

SCAPE > Slantwise CAPE
SCIN > Slantwise CIN
SCAPEP > Slantwise CAPE Partial Pressure
SCPTP > Cloud Physics Thunder Parameter with CAPE
CSI > Convective Symmetric Instability
PSI > Potential Symmetric Instability
CFA > Cold Front Aloft (pressure level)
WFA > Warm Front Aloft (pressure level)
VCHI > Velocity Potential Function
PSIVCT > Streamfunction Vector
PSIU > U - Portion Streamfunction Vector
PSIV > V - Portion Streamfunction Vector
PSIXD > Partial Derivative of PSI-U
PSIYD > Partial Derivative of PSI-V
PSIXDX > X – Portion of Partial Derivative of PSI-U
PSIXDY > Y – Portion of Partial Derivative of PSI-U
PSIYDX > X – Portion of Partial Derivative of PSI-V
PSIYDY > Y – Portion of Partial Derivative of PSI-V

CALCSYSMO [SCALAR] > Calculate Synoptic Motion of a given scalar grid
SYSRWIND [SCALAR, WIND] > Calculate the requested synoptic-relative
wind direction/speed from the synoptic motion of the given scalar.
PWBZ > Pressure Wet-Bulb Zero Level

TWBZ > Temperature Wet-Bulb Zero Level

HWBZ > Height Wet-Bulb Zero Level

WBTF > Wet-Bulb Temperature degrees F

WBTC > Wet-Bulb Temperature degrees C

WBTK > Wet-Bulb Temperature degrees K

WBPT > Wet-Bulb Theta

SWPT > Saturated Wet-Bulb Theta-e

CNPR > Condensation Pressure Ratio

CNPD > Condensation Pressure Deficit

DPDP > Dew Point Depression

SVPR > Saturated Vapor Pressure

VAPR > Vapor Pressure

LVAP > Latent heat of vaporization

- Diagnostic Functions - Shear Control Flags

KM – Defines the Lower/Upper bounding levels in Kilometers

The first * (0-9) defines the lower level to use and the second * (0-9) defines the upper level to use. Therefore, a command 14KM defines the 1km to 4km layer. Shear functions will use the default KM flags or, if missing, SLVL pressure levels unless overridden by user requested KM flag.

NOTICE: ALL shear plotted data is in M/S values. Remember to convert to KTS if required.

- Diagnostic Functions - Shear Parameters

UAVG > (Scalar) U-average wind through layer

VAVG > (Scalar) V-average wind through layer

WAVG > (Vector) Average Wind through layer

BLKS > (Scalar) Bulk Shear (06KM)

DBRSH > (Scalar) Deep Bulk Richardson Shear (09 KM)

BRCH > (Scalar) Bulk Richardson Number (06KM)

DBRCH > (Scalar) Deep Bulk Richardson Number (09KM)

TCSH > (Scalar) Total Cumulative Shear through layer

USHR > (Scalar) U-Shear between layer

VSHR > (Scalar) V-Shear between layer

TSHR > (Vector) Total Wind Shear between layer
The following supercell specific diagnostics are controlled with only the **KM flag except where noted. If the flag is omitted, 03KM is assumed. All calculations use the Bunkers Method algorithm.

RMSU > (Scalar) Supercell U-component, Right-moving (06KM)
RMSV > (Scalar) Supercell V-Component, Right-moving (06KM)
RMSS > (Vector) Supercell Motion, Right-moving (06KM)
RMSP > (Scalar) Supercell Speed, Right-moving (06KM)
RMDR > (Scalar) Supercell Direction, Right-moving (06KM)
LMSU > (Scalar) Supercell V-Component, Left-moving (06KM)
LMSV > (Scalar) Supercell V-Component, Left-moving (06KM)
LMSS > (Vector) Supercell Motion, Left-moving (06KM)
LMSP > (Scalar) Supercell Speed, Left-moving (06KM)
LMDR > (Scalar) Supercell Direction, Left-moving (06KM)
SHER > (Scalar) Storm-relative HElicity, Right moving
SHEL > (Scalar) Storm-relative HElicity, Left moving
SHOR > (Scalar) Storm-relative HOlicity, Right moving
SHOL > (Scalar) Storm-relative HOlicity, Left moving
CFDV > (Scalar) CorFiDi Vectors
CFDVU > (Scalar) Corfidi Vector (UGRD)
CFDVV > (Scalar) Corfidi Vector (VGRD)
SHRVCT03 > (Vector) 0-3KM Shear Vector
SHRVCT03U > (Scalar) 0-3KM Shear Vector (UGRD)
SHRVCT03V > (Scalar) 0-3KM Shear Vector (VGRD)
SHRVCT36 > (Vector) 3-6KM Shear Vector
SHRVCT36U > (Scalar) 3-6KM Shear Vector (UGRD)
SHRVCT36V > (Scalar) 3-6KM Shear Vector (VGRD)
SHRVCT612 > (Vector) 6-12KM Shear Vector
SHRVCT612U > (Scalar) 6-12KM Shear Vector (UGRD)
SHRVCT612V > (Scalar) 6-12KM Shear Vector (VGRD)
SMV3075 > (Vector) Storm Motion Vector 30/75
SMV3075U > (Scalar) Storm Motion Vector 30/75 (UGRD)
SMV3075V > (Scalar) Storm Motion Vector 30/75 (VGRD)
SMV1585 > (Vector) Storm Motion Vector 15/85
SMV1585U > (Scalar) Storm Motion Vector 15/85 (UGRD)
SMV1585V > (Scalar) Storm Motion Vector 15/85 (VGRD)

- Diagnostic Functions - Cross/Time Section Specific:
XREL [Vector] > Rotates Vector from GRID to Cross Sector relative
EREL [Vector] > Rotates Vector from GRID to Earth relative (TSCT)
TANG [Vector] > Finds cross-section relative tangential component
VTNG [Vector] > Plots cross-section relative tangential component
VCRC [Vector] > Plots VTNG & VVEL
VCR2 [Vector] > Plots VTNG & VVEL scaled by 2
VCR5 [Vector] > Plots VTNG & VVEL scaled by 5
NORM [Vector] > Finds cross-section relative normal component
VNRM [Vector] > Plots cross-section relative normal component
DIST > Calculates DISTance from left end of cross section
MSFC! > Calculates constant Momentum SurFaCe (M-Surfaces)
WNDX! > Displays the total wind rotated relative to the cross section
GEOX! > Displays the geostrophic wind rotated relative to the cross section
AGEX! > Displays the ageostrophic wind rotated relative to the cross section
WCRC! > Displays vertical/tangential circulations of total wind
GCRC! > Displays vertical/tangential circulations of geostrophic wind
ACRC! > Displays vertical/tangential circulations of ageostrophic wind

**- Contour Specification:
CINT > Displays Max and Min of field and requests user input
CISV > Sets mode where specified contour interval is retained for future plots
CINX > Returns to mode in which program selects contour interval for each plot
CIN# > Sets Contour Interval to # units
CIN1 > Sets Contour Interval to 1 unit
CIN2 > Sets Contour Interval to 2 units
...
CI#0 > Sets Contour Interval to # of tens of units
CI10 > Sets Contour Interval to 10 units
CI20 > Sets Contour Interval to 11 units
...
C#00 > Sets Contour Interval to # hundreds of units
C100 > Sets Contour Interval to 100 units
C200 > Sets Contour Interval to 200 units

C#++ > Sets Contour Interval to #*10**# {units == C2+3 -> 2*10**3 = 2000}
C1+3 > Sets Contour Interval to 1000 units -> 10**3
C2+3 > Sets Contour Interval to 2000 units -> 2*10**3
...
CI .# | C#-1 | > Sets Contour Interval to .# units -> #*10**-1
CI .1 | C1-1 | > Sets Contour Interval to .1 units
CI .2 | C2-1 | > Sets Contour Interval to .2 units
...
C#-- > Sets Contour Interval to #*10**-# {units == C2-3 -> 2*10**-3 = .002}
C2-2 > Sets Contour Interval to .02 units
C5-3 > Sets Contour Interval to .005 units
Line-based Contouring

Line Based Contouring with Graduated Color

Fill Based Contouring with Selected Pattern

Fill Based Contouring with Selected Color

Fill Based Contouring with Graduated Color

Displays contours greater than the value

Displays contours less than the value

Displays contours greater than the value

Displays contours less than the value

Displays contours greater than or equal to the value

Displays contours less than or equal to the value

Displays contours Greater Than and Less Than the 2 values

Have contour labels in Floating Point/Exponential Notation. This overrides Properties Selection for 1 plot

Have contour labels in Whole Integer Notation. This overrides Properties Selection for 1 plot

Calculate a Positive Mask to filter requested Scalar/Vector operation

Calculate a Negative Mask to filter requested Scalar/Vector operation.

Specify Map area

Defines Cross-Section path

Defines Time-Section location

Specify Map area

Defines Cross-Section path

Defines Time-Section location

Defines Isentropic Cross-Section path

Defines Isentropic Cross-Section path

Defines Height Surfaces Cross-Section path

Defines Height Surfaces Cross-Section path

Defines Isentropic Time-Section location

Defines Isentropic Time-Section location

Defines Height Surfaces Time-Section location

Defines Height Surfaces Time-Section location

Sets default North-to-South distance for ASTN to ## degrees
XWID > Display Cross-Section across full width of screen--Set in PLAN view
XNRO > Display Cross-Section in proportion to vertical height--Set in PLAN
ALVL > Use all available pressure levels in Cross or Time section
ATIM > Use all available forecast hours in Time section

XLVL[4 Ch. name] > Reads file ----.LVL to define TSCT/XSCT levels
THRS[4 Ch. name] > Reads file ----.LVL to define TSCT hours
TINC[Integer] > Changes time increments for time section
THN# > THiN computation grid to use every #th grid point {CAN OVERFLOW PROGRAM!!}
THN0 > Display current display mode and grid thinning factor
FULG > Displays grid data at full grid resolution
NRMG > Displays grid data at normal thinning

**- Graphics Commands:
PLAN > Re-activates PLAN view display
CROS > Re-activates CROSs-sectional display
TIME > Re-activates TIME-sectional display
XLBL > Plots values of leftmost column of cross/time section along left side
XLBB > Plots values of bottom row of cross/time section along bottom
XLTN > Calculates Latitude locations along a cross section
XLNT > Calculates Longitude locations along a cross section
HOUR > Places forecast hour into time section array
NCLB > Draws contours without labels for current request only
NLBL > Prevents plot label (top of screen) from being overwritten
BSMP|BASM!| > Read the base map file name (without extension or directory)
SAVE[4 Chtr NAME] > SAVEs graphics commands to file NAME
ENDS > Stops SAVEing graphics commands
REST[4 Chtr NAME] > RESTores graphics in file NAME
; [####;",";" preceded by 4 Chtr NAME] > RESTores graphics in file NAME
SAVS[4 Chtr NAME] > SAVes Screen contents to BMP file NAME
ALWN > If in 4PNL mode, flag to include all 4 windows in either Animation or SAVS operations.

PRSC!|BKWT| > Converts screen colors for printing using 'PRint SCreen' key
POPT > List current print option and select a new print option
PRNT [optional 4 Ch. name] > Print screen contents to default Printer
LSVG > List files containing a set of saved graphics commands

MAP > Redraws map background with no data
EMAP > Erases screen and draws map background with no data
SVMP > Save, list, or delete map plot files

& |or / | > Overlays output on previous graphics
OLAY|CNTR!| > Overlays output on previous graphics -- First command in a line
WSTOS [2 digit number] > Write Scalar solution to storage file number requested by user
WSTOV [2 digit number] > Write Vector solution to storage file number requested by user
RSTOS [2 digit number] > Read Scalar solution from storage file number requested by user
RSTOV [2 digit number] > Read Vector solution from storage file number requested by user

CLR1 > Override default and use color 1 in palette {Solid}
CLR2 > Override default and use color 2 in palette {Solid}
...
CLR9 > Override default and use color 9 in palette {Solid}
CLR0 > Override default and use color 10 in palette {Solid}
CLRA > Override default and use color 11 in palette {Solid}
...
CLRF > Override default and use color 16 in palette {BLACK - ERASES LINES}

CLRG > Override default and use color 1 in palette {Dashed}
CLRH > Override default and use color 2 in palette {Dashed}
...
CLRX > Override default and use color 14 in palette {Dotted}
CLRY > Override default and use color 15 in palette {Dotted}
CLRZ > Override default and use color 16 in palette {Dotted}

SCLR > Save current CoLoR order from palette
RCLR > Return to saved CoLoR order on palette

LNW* (*=1-9) > Change width of contour line for this display (width in pixels)

ANIM > Animates a display of data using all forecast hours (PLAN or CROSS).
 Must be first command.
ANMA > Animates a Command Macro
ANFA > Animates specific forecast hours
ENDA > Ends the Animation build process.

1PNL > If WINGRIDDS is in 4 Panel Mode, changes to 1 Panel mode
4PNL > If WINGRIDDS is in 1 Panel Mode, changes to 4 Panel mode
WIN1 > If WINGRIDDS is in 4 Panel Mode, selects Window 1 (default in 1PNL mode)
WIN2 > If WINGRIDDS is in 4 Panel Mode, selects Window 2 (not available in 1PNL mode)
WIN3 > If WINGRIDDS is in 4 Panel Mode, selects Window 3 (not available in 1PNL mode)
WIN4 > If WINGRIDDS is in 4 Panel Mode, selects Window 4 (not available in 1PNL mode)
ALWN > Use ‘All Windows’ when Printing, Screen Saving or Animation

STWX > Plots the station model on the screen for the level selected
STID > Plots station ID information (WMO or ICAO) at the geographic location.
CSTMGRID [Center Lat, Center Lon, Blowup Size, (Tangent Cone), Grid Type]
 > Command to enable custom grid using specific grid navigation info.
CSTMGRID [Grid Spec File Name]
 > Command to enable custom grid using previously saved file name.

**- Command Manipulations:
CMDS | LCMD | > Lists the previous 21 commands lines

CMD1 > Lists last Command given (without erasing screen)
CMD2 > Lists 2nd previous Command given (without erasing screen)
...
CMD9 > Lists 9th previous Command given (without erasing screen)
CMDA > Lists 10th previous Command given (without erasing screen)
...
CMDL > Lists 21st previous Command given (without erasing screen)

RPT1 > Repeats last command given
RPT2 > Repeats 2nd previous command given
...
RPT9 > Repeats 9th previous command given
RPTA > Repeats 10th previous command given
...
RPTL > Repeats 21st previous command given

**- Special COMMAND FILE (.CMD Files) Commands:
####.(Preceded by 4 Ch. Name) > Executes Named command (script) file
####:(Preceded by 4 Ch. Name) > Overlays Named command file on existing plot

LOOP > All following commands will be executed without keyboard prompts
ENDL > Ends LOOP in .CMD file

#SEC > Wait # seconds before executing next request
1SEC > Wait 1 second before executing next request
2SEC > Wait 2 seconds before executing next request
...
9SEC > Wait 9 seconds before executing next request

^ > Repeat last macro for current time
< > Repeat last macro for time equals current time - increment set by DELT
> > Repeat last macro for time equals current time + increment set by DELT
BEGT [integer] > Set begin limit of time sequence for macro repeat
ENDT [integer] > Set end limit of time sequence for macro repeat
DELT [integer] > Set increment of time sequence for macro repeat
PMSV > Save parameters (eg, LVL) in macro as permanent settings

**- Special LABELING Commands:
TXT# [line of text] > Writes TeXT on line # from top of screen
TXT1 | TEXT, TUTR | > Writes text on TOP line of screen
TXT2 > Writes text on 2nd line of screen
...
LTM# > Write forecast hour or TiMe range on line sequence # of label set
LPL# > Write Pressure Level or layer on line sequence # of Label set
LFL# > Write Flight Level or layer on line sequence # of Label set
LDN# > Write Data file Name on line sequence # of Label set
LFD# > Write Forecast model Date on line sequence # of Label set
LMN# > Write forecast Model Name on line sequence # of Label set
LFO# > Write Forecast model Origination on line sequence # of Label set
LLN# > Write forecast LeNgth on line sequence # of Label set
LLL# > Write Latitude/Longitude on line sequence # of Label set (tsct/xsct)
LSN# > Write Station identifier on line sequence # of Label set (tsct/xsct)
LTX# [line of text] > Write TeXt on line sequence # of Label set
LNDF > Stop display of DeFault Labels (applies to current plot and overlays)
LDEF > Start display of DEFault Labels (applies to current plot and overlays)
LWT# > Begin WriTing current Label set on line # from top of screen

**- To String Commands from One Line to the Next ---
CONT {LEFTMOST position} > Save fields for next command line, without plotting

LAST | LSTS!, LSTV!, LST# {RIGHTMOST command} > Returns data to work array
-- NOTE: LSTS |LST1, KEP5!| retrieves last 1 Scalar array only --
-- NOTE: LSTV |LST2, KEPV!| retrieves last 2 scalar arrays (Vector) only
-- NOTE: LST# retrieve last # scalar arrays back to work array --

** NOTE: LAST, etc. should be used ONLY for redisplay in XSCT or TSCT
** NOTE: LSTS, LSTV can NOT be used in COMMAND (.CMD) files
** NOTE: LAST is not needed if CONT was in previous line --
**- Commands/Diagnostics contained in the ALIAS.DAT file

VCTR > Sets display mode to plot winds as arrows (Default)
BOXS > Plots boxes at grid points below the surface
STBL > Computes static stability in a layer
TKNS > Generates Thickness fields
THWN > Generates Thermal Wind
TMPF > TeMPerature (degrees F)
TMPC > Calculates temperature in degrees C
TMPA > Calculates temperature in degrees K
TPCI > Provides Total Precipitation fields without resetting LEVeL (in)
CPCI > Provides Convective Precipitation fields without resetting LEVeL (in)
PWAI > Provides Precipitable Water fields without resetting LEVeL (in)
GEOX > Displays the geostrophic wind rotated relative to the cross section
GCRC > Displays vertical/tangential circulations of geostrophic wind
WDRC > Wind DiRction (degrees)
WDDD > Displays value of Total Wind Direction (degrees)
WDDF > Displays packed value of Total Wind Direction/speed (m/s)
WNDA > Retrieves the total wind Vector in m/s and sets display as wind arrow
WKNT > Retrieves the total wind Vector in knots
WMPH > Retrieves the total wind Vector in mph
WKPH > Retrieves the total wind Vector in kph
WNDB > Retrieves the total wind Vector in m/s for display as wind barb
BWND > Retrieves the total wind Vector in m/s for display as wind barb
BKNT > Retrieves the total wind Vector in knots and sets display as wind barb
BMPH > Retrieves the total wind Vector in mph and sets display as wind barb
BKPH > Retrieves the total wind Vector in kph and sets display as wind barb
MSPC[Vector] > Calculates MAGNitude of a Vector
KNOT[Scalar] > Converts a Scalar (e.g., WSPD) from m/s to KNOTs
MLPH[Scalar] > Converts a Scalar (e.g., WSPD) from m/s to MPH
KMPH[Scalar] > Converts a Scalar (e.g., WSPD) from m/s to KPH
SPED[Vector] > Calculates magnitude of wind Vector (m/s)
SPKT[Vector] > Calculates magnitude of wind Vector (knots)
SPML[Vector] > Calculates magnitude of wind Vector (mph)
SPKM[Vector] > Calculates magnitude of wind Vector (kph)
SKNT[Scalar] > Converts Scalar from m/s to KNoTs
SMPH[Scalar] > Converts Scalar from m/s to Miles Per Hour
SKPH[Scalar] > Converts Scalar from m/s to Kilometers Per Hour
VKNT[Vector] > Converts a Vector from m/s to KNoTs
VMPH[Vector] > Converts a Vector from m/s to MPH
VKPH[Vector] > Converts a Vector from m/s to KPH
WNDX > Displays the total wind rotated relative to the cross section
WCRC > Displays vertical/tangential circulations of total wind
AGEO > Generates the Ageostrophic wind Vector
AGEX > Displays the ageostrophic wind rotated relative to the cross section
ACRC > Displays vertical/tangential circulations of ageostrophic wind
TADV > Generates Temperature Advection using the Total wind
QADV > Generates Mixing Ratio Advection using the Total wind
PADV > Generates Pressure Advection using the Total wind
WDVR > Calculates DiVeRgence of the total Wind field
SDVR[Scalar and Vector] > Calculates flux divergence
VORT[Vector] > Calculates absolute vorticity
WVRT > Generates vorticity of the Total wind
GVRT > Generates vorticity of the Geostrophic wind
AVRT > Calculates the absolute VoRTicity of Ageostrophic wind
WSHD > Calculates SHearing Deformation of total Wind
WSTD > Calculates STretching Deformation of total Wind
GSHD > Calculates SHearing Deformation of Geostrophic Wind
GSTD > Calculates STretching Deformation of Geostrophic Wind
ASHD > Calculates SHearing Deformation of Ageostrophic Wind
ASTD > Calculates STretching Deformation of Ageostrophic Wind
MGRD[Scalar] > Magnitude of the GRaDient of a Scalar field
NGRD[Scalar] > Finds the Negative GRaDient of a Scalar field
WSPD > Total Wind Speed (m/sec)
WSPK > Provides total Wind SPEed in Knots
SNEG[Scalar] > Finds the NEGative of a Scalar grid
DWPC > Calculates DeW Point Temperature from available data fields (C)
DWPK > Calculates DeW Point Temperature from available data fields (K)
DWPF > Calculates DeW Point Temperature from available data fields (F)
PDEF > Calculates the Pressure DEFicit (lift) needed for saturation the LCL
LATT > Latitude
LATI > Latitude
LAT > Latitude
LONG > Longitude
LON > Longitude
F > Provides Coriolis parameter at each grid point
MFTR > Provides map factor at each grid point
MAPF > Provides map factor at each grid point
VCTR > Sets display mode to plot winds as arrows (Default)
CNTR > Overlays output on previous graphics -- First command in a line
GT00 > Displays contours greater than the value 0
LT00 > Displays contours less than the value 0
ERSN > ERASes current screen display
ERSN > ERASes current screen display
ERSC > ERASes current screen display
PRSC > Converts screen colors for printing using 'PRint SCreen' key
LAVR > Calculate Layer AVErage of variables to LEFT in Command line
LY1= > Gets data from bottom of Layer for variables to LEFT
LY2= > Gets data from top of Layer for variables to LEFT
KSM= [Integer] > Sets CoNtour SMothing (Default=1)
LAY= [two 4 Ch. levels] > Change data LaYeR specs
LFI= > List data files already opened
M2F= [Scalar] > Converts Scalar from meters to feet
INRI > Calculates the INverse of the Richardson number
IGRI > Calculates the Inverse of the Geostrophic Richardson number
MSFC > Calculates constant Momentum SurFaCe (M-Surfaces)
BASM > Read the base map file name (without extension or directory)
LSTS {RIGHTMOST command} > retrieves last 1 Scalar array only
LSTV {RIGHTMOST command} > retrieves last 2 scalar arrays (Vector) only
KEPS > retrieves last 1 Scalar array only
KEPV > retrieves last 2 scalar arrays (Vector) only
PMSS > Provides MSL Pressure fields (Std. atm. reduction) -- No LEVeL reset
PMSR > Provides MSL Pressure fields (RUC reduction) -- No LEVeL reset
PMSE > Provides MSL Pressure fields (ETA model reduction) -- No LEVeL reset
MSKS [a field] > Replaces values below the surface as missing
BOXS > Plots boxes at grid points below the surface
MSNG > Produces grid with missing value flags at points without data

**- Commands/Diagnostics contained in the ALIAS.USR file (DIAGNOSTICS DEVELOPED AT THE WPC INTERNATIONAL DESKS – Dr. José M Gálvez)

GDIF > Galvez-Davison Index (GDI). Diagnosis of tropical/subtropical and air mass convection
GDIS > Enhanced GDI (EGDI)
GRF1 > Potential for severity (shades in the macro)
GMKTT > Areas with the potential for strong convection
ILEV > Level of the lowest stable layer
WIML > Winds averaged over the 700-450 hPa layer
F_ALPP > Air mass field “alpha” (α). Ranges from cool/dry (low α) to warm/moist (high α)
F_ALPPG > Air mass field, adjusted for higher latitudes
F_GRAD > Frontal gradients
F_GRADG > Frontal gradients, adjusted for higher latitudes
KINX > K-index for tropical and air mass convection
TOTI > Total-totals Index
DENS > Air density
COMA > Convergence of the flux of mixing ratio or moisture convergence
RHTT > Relative humidity averaged in the 1000-400 hPa layer
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELM</td>
<td>Relative humidity averaged in the 700-400 hPa layer</td>
</tr>
<tr>
<td>WWLL</td>
<td>Winds averaged over the 1000-925 hPa layer</td>
</tr>
<tr>
<td>WWML</td>
<td>Winds averaged over the 1000-850 hPa layer</td>
</tr>
<tr>
<td>WWMM</td>
<td>Winds averaged over the 700-450 hPa layer</td>
</tr>
<tr>
<td>WWMU</td>
<td>Winds averaged over the 600-300 hPa layer</td>
</tr>
<tr>
<td>WWUU</td>
<td>Winds averaged over the 400-200 hPa layer</td>
</tr>
<tr>
<td>VVML</td>
<td>Vertical velocity (omegas) in 700-400 hPa layer</td>
</tr>
<tr>
<td>DDLL</td>
<td>Divergence in the 1000-925 hPa Layer, times 10^6</td>
</tr>
<tr>
<td>DDML</td>
<td>Divergence in the 1000-850 hPa Layer, times 10^6</td>
</tr>
<tr>
<td>DDMM</td>
<td>Divergence in the 700-450 hPa Layer, times 10^6</td>
</tr>
<tr>
<td>DDMU</td>
<td>Divergence in the 600-300 hPa Layer, times 10^6</td>
</tr>
<tr>
<td>DDUU</td>
<td>Upper divergence, in the 400-200 hPa Layer, empirically scaled</td>
</tr>
<tr>
<td>DDUT</td>
<td>Upper divergence, in the 400-200 hPa Layer, times 10^6</td>
</tr>
<tr>
<td>PVRT</td>
<td>Potential vorticity in specific units</td>
</tr>
<tr>
<td>VPOT</td>
<td>Potential Vorticity (general calculation)</td>
</tr>
<tr>
<td>AVPT</td>
<td>Advection of potential vorticity</td>
</tr>
<tr>
<td>AVRD</td>
<td>Advection of vorticity by the wind</td>
</tr>
<tr>
<td>VR56</td>
<td>Mid-level (500-600 hPa) vorticity</td>
</tr>
<tr>
<td>DEFO</td>
<td>Deformation</td>
</tr>
<tr>
<td>MSKT</td>
<td>Blocks data over terrain higher than 750m</td>
</tr>
<tr>
<td>MS70</td>
<td>Blocks data over terrain higher than 3000m (~700 hPa)</td>
</tr>
<tr>
<td>MS97</td>
<td>Blocks data over terrain higher than 975 hPa</td>
</tr>
</tbody>
</table>
Appendix B: Listing of Basic Grid Fields

**- WINGRDDS --- BASIC GRIDDED DATA FIELDS

****** Basic ICAO-Required Fields ******

TEMP > TEMPerature (degree C)
WIND > WIND (m/s)
WKNT > Wind (KNoTs)

UGRD > West-to East Wind Component (m/s)
VGRD > South-to-North Wind Component (m/s)

HGHT > HeiGHT (Geopotential Meters)
MAXW | WMAX! | > Data from MAXimum Wind level
TROP > Data From TROPopause level

- *** Additional Meteorological Fields *****

HGHT > Geopotential HeiGHT (meters)
PRES > Pressure (mb)
MIXR > MIXing Ratio (g/kg)
VVEL > Vertical VELocity (Microbars/sec)

PMSL > Mean Sea Level Pressure fields, obtained without resetting LEVeL

Note: If mean sea level pressure (GRIB ID=002) is not available, then an attempt is made to retrieve the RUC Reduction, the Eta Model Reduction, and the Standard Atmosphere Reduction, in that order.

PRSS > Mean sea level PReSsure (Std. atm. reduction) -- Set level first
PRSR > Mean sea level PReSsure (Ruc reduction) -- Set level first
PRSE > Mean sea level PReSsure (Eta model reduction) -- Set level first

TPCP > Total Precipitation fields, obtained without resetting LEVeL (mm)
CPCP > Convective Precipitation fields, obtained without resetting LEVeL (mm)

TPCI! > Total Precipitation fields, obtained without resetting LEVeL (in)
CPCI! > Convective Precipitation fields, obtained without resetting LEVeL (in)

NOTE: TPCx/CPCx attempt to retrieve a 12 hour accumulation. If this is not possible, then they try to obtain the longest accumulation (6,3,2,1) available.
TPC# > Total Precipitation fields in cm (#=hour accumulation)--no level reset
CPC# > Convective Precipitation field in cm(#=hour accumulation)-no level reset

- **** Automatically Derived Scalar Parameters ******

THTA > Potential Temperature - THeTA(degree K)
RELH > Relative Humidity (%)
DWPT > DeW Point Temperature (degree C)
TMPK > TeMPerature (degrees K)
TMPF! > TeMPerature (degrees F)
THTE > Equivalent Potential Temperature - THeTa/E (degree K)

****** Automatically Derived Vector Parameters ******

GEOS > GEOStrophic wind vector (m/sec)
WDDF! > Packed value of Wind Direction/speed (tens of degrees and m/sec)
WDRC! > Wind DiRction (degrees)
BWND > WiND Barbs (m/sec)
BKNT > Wind Barbs (KNoTs)

- **** Isobaric Level Specifications ******

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100 hPA level data --> FL-530 (ICAO-Required)</td>
</tr>
<tr>
<td>150</td>
<td>150 hPa level data --> FL-450 (ICAO-Required)</td>
</tr>
<tr>
<td>200</td>
<td>200 hPa level data --> FL-390 (ICAO-Required)</td>
</tr>
<tr>
<td>250</td>
<td>250 hPa level data --> FL-350 (ICAO-Required)</td>
</tr>
<tr>
<td>300</td>
<td>300 hPa level data --> FL-300 (ICAO-Required)</td>
</tr>
<tr>
<td>400</td>
<td>400 hPa level data --> FL-240 (ICAO-Required)</td>
</tr>
<tr>
<td>500</td>
<td>500 hPa level data --> FL-180 (ICAO-Required)</td>
</tr>
<tr>
<td>700</td>
<td>700 hPa level data --> FL-100 (ICAO-Required)</td>
</tr>
<tr>
<td>850</td>
<td>850 hPa level data --> FL-050 (ICAO-Required)</td>
</tr>
<tr>
<td>1000</td>
<td>1000 hPa level data</td>
</tr>
</tbody>
</table>

- **** Special Level Specifications ******

TROP > TROPopause level data (ICAO-Required)
MAXW | WMAX! | > MAXimum Wind level data (ICAO-Required)
SFC > Earth's SurFaCe data
MSL > Mean Sea Level data
CBAS > Cloud BASe level data
CTOP > Cloud TOP level data
** Additional Level/Layer Specifications ******

###Z > Height above mean sea level in m (<100m)
Z### > Height above mean sea level in hm (>=100m)

###M > Height above ground in m (<100m)
M### > Height above ground in hm (>=100m)

###U > Depth below land surface in cm (<1000cm)
U### > Depth below land surface in m (>=1000cm)

S### > Sigma level number
H### > Height above sea level (x10)
I### > Isentropic level in degrees K
B### > Boundary layer in hPa (mb) above surface at the center

** Time Specifications ******

F06 > 6 hour forecast data
F12 > 12 hour forecast data (ICAO-Required)
F18 > 18 hour forecast data (ICAO-Required)
F24 > 24 hour forecast data (ICAO-Required)
F30 > 30 hour forecast data (ICAO-Required)
F36 > 36 hour forecast data

NOTE: No special level can begin with 0 except 0DEG, 0DGX, 0000
- *** Special Optional Gridded Data Fields *****

LIFT > LIFTed Index, obtained without resetting LEVeL
LFTX > LIFTed Index, obtained without resetting LEVeL
LFT4 > LIFTed Index, obtained without resetting LEVeL
LFTS > LIFTed Index, obtained without resetting LEVeL
PWAT > Precipitable Water fields, obtained without resetting LEVeL (mm)
PWAI > Precipitable Water fields, obtained without resetting LEVeL (in)
THCK > Generates Thickness fields between LVL1 and LVL2
THWN > Generates Thermal Wind between LVL1 and LVL2

- *** Other Parameters commonly in GRIB data sets: *****

TEMP > TEMPerature (degree C)
WIND > WIND (m/s)
WKNT > Wind (KnoTs)
PRES > PRESsure (mb, .1hPa)
PTND > Pressure TeNDency (mb/hr, .1hPa/hr)
HGHT > geopotential HeiGHT (m)
GHGT > Geometric HeiGhT (m)
OZON > Total OZONe
TEMP > TEMPerature (degree C)
VTMP > Virtual TeMPerature (degree K)
THTA > potential temperature [TheTA] (degree K)
THTE > equivalent potential temperature [TheTa-E] (degree K)
DWPT > DeWPoinT temperature (degree C)
DPTD > DeWPoint temperature Depression (degree C)
WNDD > WiND Direction (degree)
WNFF > WIND SPEED (m/sec)
UGRD > GRiD relative U wind component (m/sec)
VGRD > GRiD relative V wind component (m/sec)

SFTN > Stream FuNcTion (m**2/sec)
PSYM > Montgomery stream function [PSYM] (m**2/sec**2)
VVEL > Vertical VElocity (micro-bars/sec)
VTCY > absolute VorTiCitY (1/sec)
SPFH > SPeciFiC Humidity (g/g)
RELH > RELative Humidity (%)
MIXR > MIXing Ratio (g/g)
PWAT > Precipitable WATer (cm)
VCRS > Vapor pressure (mb, .1hPa)
DEF. > Saturation DEFicit (mb, .1hPa)
PCRT > PreCipitation RaTe (cm/sec)
TPCP > Total PreCiPitation (mm)
LPCP > Large-scale (stable) PreCiPitation (mm)
CPCP > Convective PreCiPitation (mm)
SWAT > WATer equivalent Snow depth (cm)
SNDP > Snow DePth (cm)
TCLD > Total Cloud percent (%)
CCLD > Convective ClouD percent (%)
LCLD > Low CLouD percent (%)
MCLD > Middle ClouD percent (%)
HCLD > High ClouD percent (%)
CH2O > Cloud water [H2O] (cm)
PCTP > CONdensation Pressure (mb, .1hPa)
WTMP > Water TeMPerature (degree K)
TSOL > SOiL Temperature (degree K)
SWEL > significant SWELl wave height (m)
SWVR > net Short WaVe Radiation at surface (W/m**2)
LWVR > net Long WaVe Radiation at surface (W/m**2)
PRSS > mean sea level Pressure - Standard atmosphere reduction (mb, .1hPa)
PRSR > mean sea level Pressure - RUC reduction (mb, .1hPa)
PRSE > mean sea level Pressure - Eta reduction (mb, .1hPa)
LIFT > "Surface " LIFTed index (degree K)
LFTX > "best" LIFTed index (degree K)
LFTB > "Boundary layer" LIFTed index (degree K)
KNDX > KiNDeX (degree K)
SWET > SWEeT index (degree K)
HQDV > Horizontal moisture [Q] DiVergence (g/g/sec)
VSSH > Vertical wind Speed Shear (1/sec)
PTN3 > 3 hour interval Pressure TeNdency (mb/sec)
CRAN > Categorical RaiN (1/0 = Yes/No)
CZRN > Categorical freeZing RaiN (1/0 =Yes/No)
CPEL > Categorical ice PELlets (1/0 = Yes/No)
CSNO > Categorical SNOw (1/0 = Yes/No)
CWTR > Cloud WaTeR (mm)
CINH > Convective INHibition (J/kg)
CAPE > Convective Available Potential Energy (J/kg)
TKEN > Turbulent KENetic energy (J/kg)
THTV > Virtual potential temperature [TheTa-V] (degree K)
HLCY > storm relative HeLiCitY
A new Fixed Surface Type processing has been added to NGRB2PCG32 to processes Potential Vorticity Surfaces and to show the distance the PV level is above or below the Tropopause. The new PV level is prefixed with the 'P' letter a '+' or '-'. As an example:

P+05 > PV (Potential Vorticity) level 500 ft above the Tropopause

P-15 > PV (Potential Vorticity) level 1500 ft below the Tropopause
Appendix C: Observation Station Weather Symbols

Current Weather Symbols:

0 - Cloud Development NOT observed or NOT observable during past hour
1 - Clouds generally dissolving or becoming less developed during past hour
2 - State of sky on the whole unchanged during past hour
3 - Clouds generally forming or developing during past hour
4 - Visibility reduced by smoke
5 - Haze
6 - Widespread dust in suspension in the air, NOT raised by wind, at time of observation
7 - Dust or sand raised by wind, at time of observation
8 - Well developed dust devil(s) within past hour
9 - Dust storm or sand storm within sight of or at station during past hour
10 - Light fog
11 - Patches of shallow fog at station, NOT deeper than 6 feet on land
12 - More or less continuous shallow fog at station, NOT deeper than 6 feet on land
13 - Lightning visible, no thunder heard
14 - Precipitation within sight, but NOT reaching the ground
15 - Precipitation within sight, reaching the ground, but distant from station
16 - Precipitation within sight, reaching the ground, near to but NOT at station
17 - Thunder heard, but no precipitation at the station
18 - Squall(s) within sight during past hour
19 - Funnel cloud(s) within sight during past hour
20 - Drizzle (NOT freezing and NOT falling as showers) during past hour, but NOT at time of observations
21 - Rain (NOT freezing and NOT falling as showers) during past hour, but NOT at time of observations
22 - Snow (NOT falling as showers) during past hour, but NOT at time of observation
Current Weather Symbols (cont.):

23 - Rain and snow (NOT falling as showers) during past hour, but NOT at time of observation

24 - Freezing drizzle or freezing rain (NOT falling as showers) during past hour, but NOT at time of observation

25 - Showers of rain during past hour, but NOT at time of observation

26 - Showers of snow, or of rain and snow, during past hour, but NOT at time of observation

27 - Showers of hail, or of hail and rain, during past hour, but NOT at time of observation

28 - Fog during past hour, but NOT at time of observation

29 - Thunderstorm (with or without precipitation) during past hour, but NOT at time of observation

30 - Slight or moderate dust storm or sand storm, has decreased during past hour

31 - Slight or moderate dust storm or sand storm, no appreciable change during past hour

32 - Slight or moderate dust storm or sand storm, has increased during past hour

33 - Severe dust storm or sand storm, has decreased during past hour

34 - Severe dust storm or sand storm, no appreciable change during past hour

35 - Severe dust storm or sand storm, has increased during past hour

36 - Slight or moderate drifting snow, generally low

37 - Heavy drifting snow, generally low

38 - Slight or moderate drifting snow, generally high

39 - Heavy drifting snow, generally high

40 - Fog at distance at time of observation, but NOT at station during past hour

41 - Fog in patches

42 - Fog, sky discernible, has become thinner during past hour

43 - Fog, sky NOT discernible, has become thinner during the past hour

44 - Fog, sky discernible, no appreciable change during past hour

45 - Fog, sky NOT discernible, no appreciable change during past hour

46 - Fog, sky discernible, has begun or become thicker during past hour
Current Weather Symbols (cont.):

47 - \(\equiv\) Fog, sky NOT discernible, has begun or become thicker during past hour
48 - \(\equiv\) Fog, depositing rime, sky discernible
49 - \(\equiv\) Fog, depositing rime, sky NOT discernible
50 - Intermittent drizzle (NOT freezing) slight at time of observation
51 - Continuous drizzle (NOT freezing) slight at time of observation
52 - Intermittent drizzle (NOT freezing moderate at time of observation
53 - Continuous drizzle (NOT freezing), moderate at time of observation
54 - Intermittent drizzle (NOT freezing), thick at time of observation
55 - Continuous drizzle (NOT freezing), thick at time of observation
56 - Slight freezing drizzle
57 - Moderate or thick freezing drizzle
58 - Drizzle and rain, slight
59 - Drizzle and rain, moderate or heavy
60 - Intermittent rain (NOT freezing), slight at time of observation
61 - Continuous rain (NOT freezing), slight at time of observation
62 - Intermittent rain (NOT freezing) moderate at time of observation
63 - Continuous drizzle (NOT freezing), moderate at time of observation
64 - Intermittent rain (NOT freezing), heavy at time of observation
65 - Continuous rain (NOT freezing), heavy at time of observation
66 - Slight freezing rain
67 - Moderate or heavy freezing rain
68 - Rain or drizzle and snow, slight
69 - Rain or drizzle and snow, moderate or heavy
70 - Intermittent fall of snowflakes, moderate at time of observation
71 - Continuous fall of snowflakes, slight at time of observation
72 - Intermittent fall of snowflakes, moderate at time of observation
Current Weather Symbols (cont.):

73 - ** Continuous fall of snowflakes, moderate at time of observation
74 - *** Intermittent fall of snowflakes, heavy at time of observation
75 - ** Continuous fall of snowflakes, heavy at time of observation
76 - Ice needles (with or without fog)
77 - Granular snow (with or without fog)
78 - Isolated star like snow crystals (with or without fog)
79 - Ice pellets (sleet, U. S. definition)
80 - Slight rain shower(s)
81 - Moderate or heavy rain showers(s)
82 - Violent rain shower(s)
83 - Slight shower(s) of rain and snow mixed
84 - Moderate or heavy shower(s) of rain and snow mixed
85 - Slight snow shower(s)
86 - Moderate or heavy snow shower(s)
87 - Slight shower(s) of soft or small hail with or without rain, or rain and snow mixed
88 - Moderate or heavy shower(s) of soft or small hail with or without rain, or rain and snow mixed
89 - Slight shower(s) of hail, with or without rain or rain and snow mixed, not associated with thunder
90 - Moderate or heavy shower(s) of hail, with or without rain or rain and snow mixed, not associated with thunder
91 - Slight rain at time of observation; thunderstorm during past hour, but NOT at time of observation
92 - Moderate or heavy rain at time of observation; thunderstorm during past hour, but NOT at time of observation
Current Weather Symbols (cont.):

93 - Slight snow or rain and snow mixed or hail at time of observation; thunderstorm during past hour, but not at time of observation

94 - Moderate or heavy snow, or rain and snow mixed or hail at time of observation; thunderstorm during past hour, but NOT at time of observation

95 - Slight or moderate thunderstorm without hail, but with rain and/or snow at time of observation

96 - Slight or moderate thunderstorm, with hail at time of observation

97 - Heavy thunderstorm, without hail, but with rain and/or snow at time of observation

98 - Thunderstorm combined with dust storm or sand storm at time of observation

99 - Heavy thunderstorm with hail at time of observation

201 - Volcanic ash

202 - Blowing spray

203 - Unknown precipitation from an automatic station
Sky Cover Symbols:

0 - No clouds
1 - Less than one-tenth or one-tenth
2 - Two-tenths or three-tenths
3 - Four-tenths
4 - Five-tenths
5 - Six-tenths
6 - Seven-tenths or eight-tenths
7 - Nine-tenths or overcast with openings
8 - Completely overcast
9 - Sky obscured
10 - Missing
Pressure Tendency Symbols:

0 - Rising, the falling

1 - Rising, then steady; or rising, the rising more slowly

2 - Rising steadily, or unsteadily

3 - Falling or steady, then rising; or rising, then rising more quickly

4 - Steady, same as 3 hours ago

5 - Falling, then rising, same or lower than 3 hours ago

6 - Falling, then steady; or falling, then falling more slowly

7 - Falling steadily, or unsteadily

8 - Steady or rising, then falling; or falling, then falling more quickly
Past Weather Symbols:

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Clear or Few Clouds</td>
</tr>
<tr>
<td>1</td>
<td>Partly cloudy (scattered) or variable sky</td>
</tr>
<tr>
<td>2</td>
<td>Cloudy (broken) or overcast</td>
</tr>
<tr>
<td>3</td>
<td>Sandstorm or dust storm, or drifting or blowing snow</td>
</tr>
<tr>
<td>4</td>
<td>Fog, or smoke, or thick dust haze</td>
</tr>
<tr>
<td>5</td>
<td>Drizzle</td>
</tr>
<tr>
<td>6</td>
<td>Rain</td>
</tr>
<tr>
<td>7</td>
<td>Snow, or rain and snow mixed, or ice pellets (sleet)</td>
</tr>
<tr>
<td>8</td>
<td>Shower(s)</td>
</tr>
<tr>
<td>9</td>
<td>Thunderstorm, with or without precipitation</td>
</tr>
</tbody>
</table>
Appendix D: Common Color Tables

<table>
<thead>
<tr>
<th>Basic Colors</th>
<th>RED</th>
<th>GREEN</th>
<th>BLUE</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED</td>
<td>255</td>
<td>0</td>
<td>0</td>
<td>red</td>
</tr>
<tr>
<td>GREEN</td>
<td>0</td>
<td>255</td>
<td>0</td>
<td>green</td>
</tr>
<tr>
<td>BLUE</td>
<td>0</td>
<td>0</td>
<td>255</td>
<td>blue</td>
</tr>
<tr>
<td>YELLOW</td>
<td>255</td>
<td>255</td>
<td>0</td>
<td>yellow</td>
</tr>
<tr>
<td>CYAN</td>
<td>0</td>
<td>255</td>
<td>255</td>
<td>cyan</td>
</tr>
<tr>
<td>MAGENTA</td>
<td>255</td>
<td>0</td>
<td>255</td>
<td>magenta</td>
</tr>
<tr>
<td>WHITE</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>white</td>
</tr>
<tr>
<td>BLACK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>black</td>
</tr>
<tr>
<td>GRAY</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>gray</td>
</tr>
<tr>
<td>VANILLA</td>
<td>255</td>
<td>228</td>
<td>220</td>
<td>bisque</td>
</tr>
</tbody>
</table>

Oranges

<table>
<thead>
<tr>
<th>Color</th>
<th>RED</th>
<th>GREEN</th>
<th>BLUE</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORANGE</td>
<td>255</td>
<td>127</td>
<td>0</td>
<td>DarkOrange</td>
</tr>
<tr>
<td>DKORANGE</td>
<td>205</td>
<td>133</td>
<td>0</td>
<td>orange</td>
</tr>
<tr>
<td>CORAL</td>
<td>255</td>
<td>130</td>
<td>71</td>
<td>sienna</td>
</tr>
</tbody>
</table>

Browns

<table>
<thead>
<tr>
<th>Color</th>
<th>RED</th>
<th>GREEN</th>
<th>BLUE</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROWN</td>
<td>139</td>
<td>71</td>
<td>38</td>
<td>sienna</td>
</tr>
<tr>
<td>BEIGE</td>
<td>255</td>
<td>127</td>
<td>36</td>
<td>chocolate</td>
</tr>
<tr>
<td>SAND</td>
<td>205</td>
<td>133</td>
<td>63</td>
<td>tan</td>
</tr>
<tr>
<td>MUD</td>
<td>139</td>
<td>69</td>
<td>19</td>
<td>chocolate</td>
</tr>
</tbody>
</table>

Blues

<table>
<thead>
<tr>
<th>Color</th>
<th>RED</th>
<th>GREEN</th>
<th>BLUE</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKY</td>
<td>0</td>
<td>178</td>
<td>238</td>
<td>DeepSkyBlue</td>
</tr>
<tr>
<td>LTBLUE</td>
<td>30</td>
<td>144</td>
<td>255</td>
<td>DodgerBlue</td>
</tr>
<tr>
<td>GRPBLUE</td>
<td>16</td>
<td>78</td>
<td>139</td>
<td>DodgerBlue</td>
</tr>
<tr>
<td>MDCYAN</td>
<td>0</td>
<td>238</td>
<td>238</td>
<td>cyan</td>
</tr>
<tr>
<td>AQUA</td>
<td>0</td>
<td>205</td>
<td>205</td>
<td>cyan</td>
</tr>
<tr>
<td>NAVY</td>
<td>0</td>
<td>0</td>
<td>139</td>
<td>blue</td>
</tr>
<tr>
<td>DKBLUE</td>
<td>0</td>
<td>0</td>
<td>205</td>
<td>blue</td>
</tr>
<tr>
<td>INDIGO</td>
<td>148</td>
<td>0</td>
<td>211</td>
<td>DarkViolet</td>
</tr>
</tbody>
</table>

Greens

<table>
<thead>
<tr>
<th>Color</th>
<th>RED</th>
<th>GREEN</th>
<th>BLUE</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWNGRN</td>
<td>127</td>
<td>255</td>
<td>0</td>
<td>chartreuse</td>
</tr>
<tr>
<td>MDGREEN</td>
<td>0</td>
<td>205</td>
<td>0</td>
<td>green</td>
</tr>
<tr>
<td>DKGREEN</td>
<td>0</td>
<td>139</td>
<td>0</td>
<td>green</td>
</tr>
<tr>
<td>LTGREEN</td>
<td>124</td>
<td>252</td>
<td>0</td>
<td>lawn green</td>
</tr>
<tr>
<td>AVOCADO</td>
<td>107</td>
<td>142</td>
<td>35</td>
<td>olive drab</td>
</tr>
<tr>
<td>FOGREEN</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>dark green</td>
</tr>
</tbody>
</table>

Yellows

<table>
<thead>
<tr>
<th>Color</th>
<th>RED</th>
<th>GREEN</th>
<th>BLUE</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLD</td>
<td>255</td>
<td>215</td>
<td>0</td>
<td>gold</td>
</tr>
<tr>
<td>DKYELLOW</td>
<td>238</td>
<td>238</td>
<td>0</td>
<td>yellow</td>
</tr>
<tr>
<td>BLOND</td>
<td>238</td>
<td>180</td>
<td>34</td>
<td>goldenrod</td>
</tr>
</tbody>
</table>

Reds

<table>
<thead>
<tr>
<th>Color</th>
<th>RED</th>
<th>GREEN</th>
<th>BLUE</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>PINK</td>
<td>255</td>
<td>174</td>
<td>185</td>
<td>LightPink</td>
</tr>
<tr>
<td>DKPINK</td>
<td>255</td>
<td>106</td>
<td>106</td>
<td>IndianRed</td>
</tr>
<tr>
<td>MAROON</td>
<td>139</td>
<td>0</td>
<td>0</td>
<td>red</td>
</tr>
<tr>
<td>APRICOT</td>
<td>255</td>
<td>165</td>
<td>79</td>
<td>tan</td>
</tr>
<tr>
<td>Color</td>
<td>Red</td>
<td>Green</td>
<td>Blue</td>
<td>Hex Code</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>VIOLET</td>
<td>137</td>
<td>104</td>
<td>205</td>
<td>MediumPurple</td>
</tr>
<tr>
<td>MDVIOLET</td>
<td>238</td>
<td>44</td>
<td>44</td>
<td>firebrick</td>
</tr>
<tr>
<td>PURPLE</td>
<td>145</td>
<td>44</td>
<td>238</td>
<td>purple</td>
</tr>
<tr>
<td>PLUM</td>
<td>139</td>
<td>0</td>
<td>139</td>
<td>magenta</td>
</tr>
<tr>
<td>FIREBRIC</td>
<td>205</td>
<td>0</td>
<td>0</td>
<td>red</td>
</tr>
<tr>
<td>ORRED</td>
<td>238</td>
<td>64</td>
<td>0</td>
<td>OrangeRed</td>
</tr>
</tbody>
</table>

Grays

<table>
<thead>
<tr>
<th>Grays</th>
<th>Red</th>
<th>Green</th>
<th>Blue</th>
<th>Hex Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>G99</td>
<td>252</td>
<td>252</td>
<td>252</td>
<td>gray99</td>
</tr>
<tr>
<td>G98</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>gray98</td>
</tr>
<tr>
<td>G97</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>gray97</td>
</tr>
<tr>
<td>G96</td>
<td>245</td>
<td>245</td>
<td>245</td>
<td>gray96</td>
</tr>
<tr>
<td>G95</td>
<td>242</td>
<td>242</td>
<td>242</td>
<td>gray95</td>
</tr>
<tr>
<td>G94</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>gray94</td>
</tr>
<tr>
<td>G93</td>
<td>237</td>
<td>237</td>
<td>237</td>
<td>gray93</td>
</tr>
<tr>
<td>G92</td>
<td>235</td>
<td>235</td>
<td>235</td>
<td>gray92</td>
</tr>
<tr>
<td>G91</td>
<td>232</td>
<td>232</td>
<td>232</td>
<td>gray91</td>
</tr>
<tr>
<td>G90</td>
<td>230</td>
<td>230</td>
<td>230</td>
<td>gray90</td>
</tr>
<tr>
<td>G89</td>
<td>227</td>
<td>227</td>
<td>227</td>
<td>gray89</td>
</tr>
<tr>
<td>G88</td>
<td>224</td>
<td>224</td>
<td>224</td>
<td>gray88</td>
</tr>
<tr>
<td>G87</td>
<td>222</td>
<td>222</td>
<td>222</td>
<td>gray87</td>
</tr>
<tr>
<td>G86</td>
<td>219</td>
<td>219</td>
<td>219</td>
<td>gray86</td>
</tr>
<tr>
<td>G85</td>
<td>217</td>
<td>217</td>
<td>217</td>
<td>gray85</td>
</tr>
<tr>
<td>G84</td>
<td>214</td>
<td>214</td>
<td>214</td>
<td>gray84</td>
</tr>
<tr>
<td>G83</td>
<td>212</td>
<td>212</td>
<td>212</td>
<td>gray83</td>
</tr>
<tr>
<td>G82</td>
<td>209</td>
<td>209</td>
<td>209</td>
<td>gray82</td>
</tr>
<tr>
<td>G81</td>
<td>207</td>
<td>207</td>
<td>207</td>
<td>gray81</td>
</tr>
<tr>
<td>G80</td>
<td>204</td>
<td>204</td>
<td>204</td>
<td>gray80</td>
</tr>
<tr>
<td>G79</td>
<td>201</td>
<td>201</td>
<td>201</td>
<td>gray79</td>
</tr>
<tr>
<td>G78</td>
<td>199</td>
<td>199</td>
<td>199</td>
<td>gray78</td>
</tr>
<tr>
<td>G77</td>
<td>196</td>
<td>196</td>
<td>196</td>
<td>gray77</td>
</tr>
<tr>
<td>G76</td>
<td>194</td>
<td>194</td>
<td>194</td>
<td>gray76</td>
</tr>
<tr>
<td>G75</td>
<td>191</td>
<td>191</td>
<td>191</td>
<td>gray75</td>
</tr>
<tr>
<td>G74</td>
<td>189</td>
<td>189</td>
<td>189</td>
<td>gray74</td>
</tr>
<tr>
<td>G73</td>
<td>186</td>
<td>186</td>
<td>186</td>
<td>gray73</td>
</tr>
<tr>
<td>G72</td>
<td>184</td>
<td>184</td>
<td>184</td>
<td>gray72</td>
</tr>
<tr>
<td>G71</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>gray71</td>
</tr>
<tr>
<td>G70</td>
<td>179</td>
<td>179</td>
<td>179</td>
<td>gray70</td>
</tr>
<tr>
<td>G69</td>
<td>176</td>
<td>176</td>
<td>176</td>
<td>gray69</td>
</tr>
<tr>
<td>G68</td>
<td>173</td>
<td>173</td>
<td>173</td>
<td>gray68</td>
</tr>
<tr>
<td>G67</td>
<td>171</td>
<td>171</td>
<td>171</td>
<td>gray67</td>
</tr>
<tr>
<td>G66</td>
<td>168</td>
<td>168</td>
<td>168</td>
<td>gray66</td>
</tr>
<tr>
<td>G65</td>
<td>166</td>
<td>166</td>
<td>166</td>
<td>gray65</td>
</tr>
<tr>
<td>G64</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td>gray64</td>
</tr>
<tr>
<td>G63</td>
<td>161</td>
<td>161</td>
<td>161</td>
<td>gray63</td>
</tr>
<tr>
<td>G62</td>
<td>158</td>
<td>158</td>
<td>158</td>
<td>gray62</td>
</tr>
<tr>
<td>G61</td>
<td>156</td>
<td>156</td>
<td>156</td>
<td>gray61</td>
</tr>
<tr>
<td>G60</td>
<td>153</td>
<td>153</td>
<td>153</td>
<td>gray60</td>
</tr>
<tr>
<td>G59</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>gray59</td>
</tr>
<tr>
<td>G58</td>
<td>148</td>
<td>148</td>
<td>148</td>
<td>gray58</td>
</tr>
<tr>
<td>G57</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>gray57</td>
</tr>
</tbody>
</table>
Grays (cont.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G56</td>
<td>143</td>
<td>143</td>
<td>143</td>
<td>gray56</td>
</tr>
<tr>
<td>G55</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>gray55</td>
</tr>
<tr>
<td>G54</td>
<td>138</td>
<td>138</td>
<td>138</td>
<td>gray54</td>
</tr>
<tr>
<td>G53</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>gray53</td>
</tr>
<tr>
<td>G52</td>
<td>133</td>
<td>133</td>
<td>133</td>
<td>gray52</td>
</tr>
<tr>
<td>G51</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>gray51</td>
</tr>
<tr>
<td>G50</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>gray50</td>
</tr>
<tr>
<td>G49</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>gray49</td>
</tr>
<tr>
<td>G48</td>
<td>122</td>
<td>122</td>
<td>122</td>
<td>gray48</td>
</tr>
<tr>
<td>G47</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>gray47</td>
</tr>
<tr>
<td>G46</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>gray46</td>
</tr>
<tr>
<td>G45</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>gray45</td>
</tr>
<tr>
<td>G44</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>gray44</td>
</tr>
<tr>
<td>G43</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>gray43</td>
</tr>
<tr>
<td>G42</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>gray42</td>
</tr>
<tr>
<td>G41</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>gray41</td>
</tr>
<tr>
<td>G40</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>gray40</td>
</tr>
<tr>
<td>G39</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>gray39</td>
</tr>
<tr>
<td>G38</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>gray38</td>
</tr>
<tr>
<td>G37</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>gray37</td>
</tr>
<tr>
<td>G36</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>gray36</td>
</tr>
<tr>
<td>G35</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>gray35</td>
</tr>
<tr>
<td>G34</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>gray34</td>
</tr>
<tr>
<td>G33</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>gray33</td>
</tr>
<tr>
<td>G32</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>gray32</td>
</tr>
<tr>
<td>G31</td>
<td>79</td>
<td>79</td>
<td>79</td>
<td>gray31</td>
</tr>
<tr>
<td>G30</td>
<td>77</td>
<td>77</td>
<td>77</td>
<td>gray30</td>
</tr>
<tr>
<td>G29</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>gray29</td>
</tr>
<tr>
<td>G28</td>
<td>71</td>
<td>71</td>
<td>71</td>
<td>gray28</td>
</tr>
<tr>
<td>G27</td>
<td>69</td>
<td>69</td>
<td>69</td>
<td>gray27</td>
</tr>
<tr>
<td>G26</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>gray26</td>
</tr>
<tr>
<td>G25</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>gray25</td>
</tr>
<tr>
<td>G24</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>gray24</td>
</tr>
<tr>
<td>G23</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>gray23</td>
</tr>
<tr>
<td>G22</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>gray22</td>
</tr>
<tr>
<td>G21</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>gray21</td>
</tr>
<tr>
<td>G20</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>gray20</td>
</tr>
<tr>
<td>G19</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>gray19</td>
</tr>
<tr>
<td>G18</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>gray18</td>
</tr>
<tr>
<td>G17</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>gray17</td>
</tr>
<tr>
<td>G16</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>gray16</td>
</tr>
<tr>
<td>G15</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>gray15</td>
</tr>
<tr>
<td>G14</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>gray14</td>
</tr>
<tr>
<td>G13</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>gray13</td>
</tr>
<tr>
<td>G12</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>gray12</td>
</tr>
<tr>
<td>G11</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>gray11</td>
</tr>
<tr>
<td>G10</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>gray10</td>
</tr>
<tr>
<td>G09</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>gray9</td>
</tr>
<tr>
<td>G08</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>gray8</td>
</tr>
<tr>
<td>G07</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>gray7</td>
</tr>
<tr>
<td>G06</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>gray6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>G05</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>gray5</td>
</tr>
<tr>
<td>G04</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>gray4</td>
</tr>
<tr>
<td>G03</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>gray3</td>
</tr>
<tr>
<td>G02</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>gray2</td>
</tr>
<tr>
<td>G01</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>gray1</td>
</tr>
</tbody>
</table>
Appendix E: Assorted Diagnostic Formulas

Helicity/Helicity Information –

Many meteorologists are familiar with the term ‘Helicity’ but they may not have heard of ‘Helicity’. Below is an explanation of the two functions.

Helicity: integrated "streamwise component" of horizontal vorticity flux.
Helicity: integrated "crosswise component" of horizontal vorticity flux.

Helicity calculation is based on code developed by Erik Rasmussen (1990-1991)

The Helicity function computes the integrated "crosswise component" of horizontal vorticity flux. This parameter is similar to helicity and is discussed in Davies-Jones, JAS 41, p. 2991- (1984).

HELICITY = INTEGRAL \[(u-c_u) * dv/dz - (v-c_v) * du/dz \] Dz
HOLICITY = INTEGRAL \[(u-c_u) * du/dz - (v-c_v) * dv/dz \] Dz

Note that helicity is the same as helicity but with the vertical derivative terms reversed.

It is possible that comparisons of crosswise (holicity) vs. streamwise (helicity) integrated vorticity may lead to intriguing new techniques to forecast storm type or motion.

New Frontogenesis Formulas –

Rotational Frontogenesis and its sub functions use the following formula:

RFGV = 0.5*MAG(GRAD(THTA))*(DDX(VGRD)-DDY(UGRD))
RFGD = (0.5/MAG(GRAD(THTA))*(2.*DDX(THTA)*DDY(THTA)*Est+ (DDX(THTA)*DDX(THTA)-DDY(THTA)*DDY(THTA))*Esh)
RFGT = (1./MAG(GRAD(THTA))*thetap*(DDX(OMEGA)*DDY(THTA) +DDY(OMEGA)*DDX(THTA))
RFGN = (RFGV+RFGD+RFGT)*1.E9

WHERE: Esh = DDX(VGRD)+DDY(UGRD)
Est = DDX(UGRD)-DDY(VGRD)
Thetap = ((PRES(LVL)-PRES(LVL+1))*(THETA(LVL-1)- THETA(LVL))/(PRES(LVL-1)-PRES(LVL))+(PRES(LVL-1)-PRES(LVL))* (THETA(LVL)-THETA(LVL+1))/(PRES(LVL)-PRES(LVL+1))+(PRES(LVL)-PRES(LVL+1)))/(PRES(LVL-1)-PRES(LVL+1))
Escalar Frontogenesis and its sub functions use the following formula:

\[
\begin{align*}
E_{FGG} &= -0.5 \cdot \text{MAG(GRAD}(THTA)) \cdot (\text{DDX}(UGRD) + \text{DDY}(VGRD)) \\
E_{FGD} &= -(0.5 \cdot \text{MAG(GRAD}(THTA)) \cdot (2 \cdot \text{DDX}(THTA) \cdot \text{DDY}(THTA) \cdot \text{Esh} + \\
\& \quad (\text{DDX}(THTA) \cdot \text{DDX}(THTA) - \text{DDY}(THTA) \cdot \text{DDY}(THTA)) \cdot \text{Est}) \\
E_{FGT} &= -(1 \cdot \text{MAG(GRAD}(THTA)) \cdot \theta \text{etap} \cdot (\text{DDX}(OMEGA) \cdot \text{DDX}(THTA) \\
\& \quad + \text{DDY}(OMEGA) \cdot \text{DDY}(THTA)) \\
E_{FGN} &= (E_{FGG} + E_{FGD} + E_{FGT}) \cdot 1 \cdot E9
\end{align*}
\]

WHERE: \(E_{sh} = \text{DDX}(VGRD) + \text{DDY}(UGRD) \)
\(E_{st} = \text{DDX}(UGRD) - \text{DDY}(VGRD) \)
\(\theta \text{etap} = ((PRES(LVL) - PRES(LVL+1)) \cdot (THETA(LVL-1) - \\
\text{THETA}(LVL)) / (PRES(LVL-1) - PRES(LVL)) + (PRES(LVL-1) - PRES(LVL)) \cdot \\
(THETA(LVL) - THETA(LVL+1)) / (PRES(LVL) - PRES(LVL+1))) / \\
(PRES(LVL-1) - PRES(LVL+1)) \)